
People's Democratic Republic of Algeria

Ministry of Higher Education and Scienti�c Research

University of Bordj Bou Arreridj Faculty of Mathematics and Computer
Science

Graduation Final Project

in view of obtaining the diploma of master in computer science

Master in Computer Science

Title

Proposition and evaluation of an entity linking

system based on machine learning methods

Realized by

TOUKALI Sabar & DJAAFRI Badre DDine

Graduate on ...

Board of Examiners:

President

Protractor Dr. BELALTA Ramla MCB, University de BBA

Examiners

... ...

ACKNOWLEDGEMENTS

“
First of all, we would like to thank Almighty Allah, for His

guidance and strength.
We would like to express our sincere gratitude and

appreciation to our supervisor, Associate Doctor Belalta
Ramla, for her continuous inspiration, support, guidance,
encouragement, advice, patience, and individual feedback

throughout the course of Graduate.Study. She was an
approachable supervisor who motivated us to achieve our
goals. We feel very grateful and blessed to have worked

under her supervision. We would not imagine carrying out
this research without her constant support and help.

We would like to express our gratitude and appreciation to
our colleagues in our research group for their discussions,
comments and advice. We would also like to thank all of

our friends for their encouragement and support. We wish
to express our appreciation to our honorable parents. And

we would like to dedicate this dissertation to them.

”

I

Abstract

Named Entity Linking is the task of linking an ambiguous entity mention to a cor-
responding entry in a knowledge base. Current methods have mostly focused on large
unstructured text data to learn representations of entities. Harvesting entity from these
large text collections and linking it, is a major challenge.

Solutions to this entity linking problem, we propose an efficient linking method that
uses machine learning technics and algorithms. We considered it as a binary classification
problem, started with some principal features as mention and its candidate and other
feature as mention context and candidate context to train the model and testing it. We
use there ML method, one of them was Random forest which complete the task with a
positive and satisfactory result.

Keywords : Entity linking, Machine learning, knowledge base, Binary clas-
sification, Natural language processing

II

Résumé

La liaison d’entité nommée est la tâche de lier une mention d’entité ambiguë à une
entrée correspondante dans une base de connaissances. Les méthodes actuelles se sont
principalement concentrées sur de grandes données textuelles non structurées pour appren-
dre des représentations d’entités. Récolter des entités à partir de ces grandes collections
de textes et les relier est un défi majeur.

Solutions à ce problème de liaison d’entités, nous proposons une méthode de liaison
efficace qui utilise des techniques et des algorithmes d’apprentissage automatique. Nous
l’avons considéré comme un problème de classification binaire, commencé avec certaines
caractéristiques principales comme mention et son candidat et d’autres caractéristiques
comme contexte de mention et contexte de candidat pour entraîner le modèle et le tester.
Nous y utilisons des méthodes d’apprentissage automatique, l’une d’entre elles était la
forêt aléatoire qui termine la tâche avec un résultat positif et satisfaisant.

Mots clés : Entité Nommée, Apprentissage automatique, Base de connais-
sances, Classification binaire, Traitement du langage naturel..

III

ملخص

الحالية الطرق المعرفة، قاعدة في يوافقه الذي الكيان مع نص في ذكر ما كيان ربط مهمة هي المسماة الكيانات ربط
هذه من الكيانات هذه اسٕتخراج الكيانات. هذه لتمثيل نمط لإستكشاف المنظمة غير الكبيرة النصوص على ركزت

كبيرا. حديا ت تعد وربطها الكبيرة النصوص
وكانٔه المشكل فإعتبرنا الصناعي. الذكاء وخوارزميات تقنيات يستعمل فعال ربط نهج اقٕترحنا المشكلة، لهذه كحل
قاعدة في ومثيله النص في المذكور كالكيان الاسٔاسية الخصائص بإستخدام النموذج بتدريب بدانٔا ثنائي، تصنيف مشكل
اكٔملت والتي العشوائية الغابة بينها من الصناعي للذكاء خوارزميات ثلاث استخدمنا ذلك. بعد بإختباره وقمنا المعرفة،

ومرضية. ايٕجابية بنتيجة المهمة

اللغة معالجة الثنائي، التصنيف المعرفة، قاعدة الصناعي، الذكاء الكيانات، ربط المفتاحية: الكلمات
الطبيعية.

IV

Contents

ACKNOWLEDGEMENTS . I

Abstract . II

Résumé . III

IV . ملخص
General Introduction . 1

1 Introduction to Entity Linking . 2
1.1 Introduction . 3
1.2 Natural Language Processing . 3

1.2.1 NLP applications . 3
1.2.1.1 Machine Translation . 3
1.2.1.2 Text Categorization . 4
1.2.1.3 Question-Answering . 4
1.2.1.4 Information Extraction 4
1.2.1.5 Dialogue System . 4

1.2.2 Named Entity recognition . 5
1.3 Named Entity Linking . 6

1.3.1 What is Named Entity Linking . 6
1.3.2 Why Named Entity Linking . 7
1.3.3 Candidate Entity Generation . 7

1.3.3.1 Name Dictionary Based Techniques 7
1.3.3.1.1 What is a name dictionary 8
1.3.3.1.2 Construct the name dictionary 8
1.3.3.1.3 Take advantage of the dictionary 10

1.3.3.2 Methods Based on Search Engines 10
1.3.4 Candidate Entity Ranking . 11

1.3.4.1 Features . 11
1.3.4.1.1 Context-Independent Features 11
1.3.4.1.2 Context-Dependent Features 13

1.3.4.2 Supervised ranking methods 14
1.3.4.2.1 Binary Classification Methods 14
1.3.4.2.2 Learning to Rank Methods 14

1.3.4.3 Unsupervised ranking method 15
1.3.4.3.1 VSM Based Methods 16

V

Contents

1.3.4.3.2 Information Retrieval Based Methods 16
1.3.5 Unlinkable Mention Prediction . 17

1.4 Conclusion . 17

2 Related Work . 18
2.1 Introduction . 19
2.2 Bunescu and Pasca . 19

2.2.1 Extractor . 19
2.2.2 Searcher . 19
2.2.3 Disambiguator . 19

2.3 Cucerzan . 20
2.3.1 Extractor . 20
2.3.2 Searcher . 20
2.3.3 Disambiguator . 20

2.4 UKP-UBC Entity Linking at TAC-KBP 21
2.4.1 Extractor . 21
2.4.2 Searcher . 22
2.4.3 Disambiguator . 22

2.5 Lightweight Multilingual Entity Extraction and Linking 23
2.5.1 Extractor . 23
2.5.2 Searcher . 23
2.5.3 Disambiguator . 24

2.6 AGDISTIS . 25
2.6.1 Extractor . 25
2.6.2 Searcher . 25
2.6.3 Disambiguator . 25

2.7 Conclusion . 26

3 Disambiguation and Linking System . 27
3.1 Introduction . 28
3.2 Datasets . 28

3.2.1 Dataset structure . 28
3.2.2 Create Dictionary . 31

3.2.2.1 Dictionary for kwdw dataset 31
3.2.2.2 Two dictionary for our dataset 32

3.2.3 Dataset Creation process . 33
3.2.3.1 First Dataset Creation processt 33
3.2.3.2 Second Dataset Creation process 33

3.3 First Experiment . 34
3.3.1 Named entity recognition . 34

3.3.1.1 Spacy NER Implementation 34
3.3.1.2 Evaluationn . 35

3.3.2 Candidate entity generation . 35
3.3.2.1 Search engine method . 35
3.3.2.2 Dictionary method . 35

3.3.3 Named entity linking . 36

VI

Contents

3.3.3.1 Using Page views feature 36
3.3.3.2 Using Popularity feature 36
3.3.3.3 Evaluation of two methods 37

3.4 Second Experiment . 37
3.4.1 Dataset Correcting . 37
3.4.2 Dataset Cleaning . 38
3.4.3 Feature Selection . 40
3.4.4 Training Models . 41
3.4.5 Testing and evaluation . 42
3.4.6 improve dataset . 44

3.5 Conclusion . 46

General Conclusion . 47

References . 48

VII

List of Figures

1.1 example for named entity recognition . 5
1.2 the three NEL sub-tasks along with their main techniques 7
1.3 example of redirect page . 9
1.4 example of disambiguation pages . 9
1.5 the typical “learning-to-rank” flow . 15

2.1 overview of AGDISTIS . 25

3.1 example of dataset structure . 29
3.2 example of kwdw dictionary . 32
3.3 example of first dictionary . 32
3.4 example of second dictionary . 33
3.5 spread chart for three features . 38
3.6 spread chart for three features edited . 38
3.7 class count plot . 39
3.8 null count . 39
3.9 null count . 40
3.10 TD dataset’s convolution matrixes . 43
3.11 KWDW_R dataset’s convolution matrixes 43
3.12 class count plot . 45
3.13 TD dataset’s convolution matrixes . 45

VIII

List of Tables

1.1 the named principal entities are identified by space 6

3.1 Spacy types . 34
3.2 Spacy NER evaluation . 35
3.3 evaluation of first method . 37
3.4 evaluation of second method . 37
3.5 features evaluation . 41
3.6 TD dataset evaluation . 44
3.7 KWDW_R dataset evaluation . 44
3.8 balanced dataset evaluation . 46

IX

Listings

3.1 retrieve category function . 29
3.2 calculate CDCM similarity function . 30
3.3 calculate spacy similarity function . 30
3.4 calculate CDWM similarity function . 31
3.5 Spacy NER code . 35
3.6 TF-IDF vectorizer from SKLearn library 41
3.7 logistic regression code . 42
3.8 decision tree code . 42
3.9 random forest code . 42

X

List of abbreviations and acronyms

NLP Natural Language Processing

NER Named Entity Recognition

NEL Named Entity Linking

NED Named Entity Disambiguation

LTR Learning To Rank

VSM Vector Space Model

IR Information retrieval

SVM support-vector machine

UKP Knowledge Processing Lab

POS Part Of Speech

CBOW Continuous Bag Of Words

FEL Fast Entity Link

HITS Hypertext-Induced Topic Search

CRF Conditional Random Fields

XI

General Introduction

ML algorithms use statistical models that provide systems with the ability to produce
predictions without human intervention, having accessed sample data, known as training
data, in order to learn and improve human experiences. Available ML algorithms enable
the analysis of large volumes of data, including: supervised ML algorithms, unsupervised
ML algorithms, semi-supervised ML algorithms.

NLP began in the 1950s as the intersection of artificial intelligence and linguistics.
NLP was originally distinct from text information retrieval (IR), which employs highly
scalable statistics-based techniques to index and search large volumes of text efficiently.
However, NLP and IR have converged somewhat. Currently, NLP borrows from several,
very diverse fields, requiring today’s NLP researchers and developers to broaden their
mental knowledge base significantly.

NLP works behind the scenes to enhance tools we use every day, like chatbots, spell-
checkers, or language translators. Combined with machine learning algorithms, NLP
creates systems that learn to perform tasks on their own and get better through experi-
ence. NLP-powered tools can help you classify social media posts by sentiment, or extract
named entities from business emails, among many other things and linking them to their
corresponding entity in a knowledge base. This task is called Named Entity Linking.

The correct identification of the link between an entity mention in a text and a known
entity in a large knowledge base is important in information retrieval or information
extraction. The general approach for this task is to generate, for a given mention, a
set of candidate entities from the base and, in a second step, determine which is the
best one. In recent years there has been an increase in the amount of research seeking
to apply ML to the named entity linking task. Since there are two primary issues with
resolving named entity mentions: ”variety” and ”ambiguity”, we have tried and implement
three ML methods and we create a disambiguation dictionary and dataset contains many
information could help to solve this problems.

1

Chapter 1

Introduction to Entity Linking

2

Chapter 1. Introduction to Entity Linking

1.1 Introduction

Nowadays, the media have expanded significantly and rapidly, and with the develop-
ment of the digital age, information has become widely spread, resulting in an exponential
increase in the volume of data available online via blogs, newspapers, discussion forums,
and other forms of information of all kinds. At this time, this data can only be inter-
preted by humans. The nature and intelligence of human could makes him understand
the meaning of texts by understanding the context of the sentences, while while for the
computer it’s a hard task. for that a huge work and a lot of research is in progress to deal
with this issue.

1.2 Natural Language Processing

Natural language processing (NLP) is a branch of artificial intelligence and linguistics
aims to help computers understand human language phrases and words.[11] It is a disci-
pline that focuses on the interaction between data science and human language, and is
expanding to cover a lot of industries. NLP thrives today, thanks to massive improvements
in data access and increased computational power, which allow practitioners to achieve
meaningful results in areas such as healthcare, media, finance, and human resources.

For example in the translation domain has emerged to facilitate the work of users
because some users cannot fully understand all languages and may not be well versed in
a particular language, and NLP caters to those users who do not have enough time to
learn or master new languages.[11]

1.2.1 NLP applications

There are many different fields that apply natural language processing and from this
point we mention some of them such as Machine Translation, Email Spam detection,
Information Extraction, Question Answering etc.

1.2.1.1 Machine Translation

Given that the majority of the world is online, making data accessible and available
to everybody is a difficult undertaking.[11] The main challenge is to provide a lot of
data, which in turn was able to break the language barrier; because many different lan-
guages have a completely different sentence, structure and grammar phrases than another
language.

”Machine Translation is generally translating phrases from one language to another
with the help of a statistical engine like Google Translate. The challenge with machine
translation technologies is not directly translating words but keeping the meaning of
sentences intact along with grammar and tenses. The statistical machine learning gathers
as many data as they can find that seems to be parallel between two languages and they

3

Chapter 1. Introduction to Entity Linking

crunch their data to find the likelihood that something in Language A corresponds to
something in Language B. As for Google, in September 2016, announced a new machine
translation system based on artificial neural networks and Deep learning.”[11]

In recent years, various methods have been proposed to automatically evaluate ma-
chine translation quality by comparing hypothesis translations with reference translations.

1.2.1.2 Text Categorization

”Categorization systems inputs a large flow of data like official documents, military
casualty reports, market data, news-wires etc. and assign them to predefined categories
or indices. Some companies have been using categorization systems to categorize trouble
tickets or complaint requests and routing to the appropriate desks.”[11]

A false negative and a false positive are both possible outcomes. Spam filters are at
the heart of NLP technology, which is reduced to the task of extracting meaning from text
strings. A spam filtering solution for an email system employs a collection of protocols to
detect which incoming messages are spam and which are not.[11]

1.2.1.3 Question-Answering

”In contrast to Information Retrieval, which provides a list of potentially relevant
documents in response to a user’s query, question-answering provides the user with either
just the text of the answer itself or answer-providing passages that may contain the right
answer.”[5]

1.2.1.4 Information Extraction

A relatively recent application field focuses on the identification, labeling, and extrac-
tion of specific essential aspects of information into a structured representation.[5]

For many applications, extracting entities such as names, places, events, dates, times
and prices is a powerful way to summarize the information relevant to a user’s needs,
from large collections of text.

1.2.1.5 Dialogue System

Perhaps the most desirable applications of the future, are the systems envisioned by
large providers of end user applications, Dialogue systems, which focuses on a narrowly
defined applications (like refrigerator or home theater systems) currently uses the phonetic
and lexical levels of language. It is believed that these dialogue systems when utilizing
all levels of language processing offer potential for fully automated dialog systems.[5]

4

Chapter 1. Introduction to Entity Linking

1.2.2 Named Entity recognition

Named entity recognition is the identification of important names in the text, and
systems are required to recognize the named entities present in the text. In any text
document, there are certain terms that represent specific entities that are more useful
and have a unique context. These entities are known as named entities.

From this point of view, Named Entity Recognition (NER) must be used to identify the
words of entities and what their types are, such as Person (PER), Organization (ORG),
and Geo-Political Entities (GPE) etc. Determining the names of the entities is essential,
which is why the information must be retrieved from the knowledge base, where all the
information is usually available.”For example, in the phrase ‘Michael Jordan lives in the
United States,’ the NER system extracts Michael Jordan referring to the person’s name
and the United States indicating the name of the country. NER serves as the basis
for many critical areas of information management, such as semantic annotations, and
answering questions.”[19]

From here we can understand the content of the text by extracting those names.
Named Entity Recognition (NER) does not need to know the meaning of the word or how
it affects the text, nor does it need to demystify these entities using a knowledge base.

Python Developers, and In particular Spacy Developers provide us an easy tool to
extract named entities from a text which is more an efficient tool, For example we will
try this library on one of the scripts in sports as shown in the figure 1.1:

Figure 1.1: example for named entity recognition

5

Chapter 1. Introduction to Entity Linking

The named principal entities are identified by means of this table. To understand in
more detail what each named entity means as shown in the table 1.1 :

TYPE DESCRIPTION
PERSON People, incuding fictional

NORP Nationalities or religious or political groups
FACILITY Buildings, airports, highways, bridges, etc

ORG Companies, cities, states
GPE Countries, cities, states
LOC Non-GPE locations, mountain ranges, bodies of water

PRODUCT Objects, vehicles, foods, ect (Not services)
EVENT Named hurricanes, battles, wars, sports events, etc

WORK_OF_ART Titles of books, songs, etc
LAW Named documents made into laws

LANGUAGE Any named language
DATE Absolute or relative dates or periods
TIME Times smaller than a day

PERCET Percentage, including ”%”
MONEY Monetary values, including unit

QUANTITY Measurements, as of weight or distance
ORDINAL ”first”, ”second”, etc

CARDINAL Numerals that do not fall under another type

Table 1.1: the named principal entities are identified by space

1.3 Named Entity Linking

1.3.1 What is Named Entity Linking

Named entity linking is the task of extracting query references in a text to its corre-
sponding entity in the knowledge base. To connect the entity, three important steps must
be followed: candidate entity generation, Candidate Entity Ranking and Evaluating the
result. The first step is to identify the named entities and then the second step, which has
a high importance, where we linking entities to the knowledge base. At last, the system
returns the ID of the corresponding entity in the knowledge base or NIL (a label that
indicate that there is no matching entity in the knowledge).[13]

6

Chapter 1. Introduction to Entity Linking

Figure 1.2: the three NEL sub-tasks along with their main techniques

1.3.2 Why Named Entity Linking

Is the task of disambiguating (NED) named entities and linking them to a knowledge
base (Wikidata, DBpedia, or YAGO…). ”Entity linking also known as named entity
disambiguation. The task of named entity linking refers to map named entity mentions
in the text to their corresponding entities in a knowledge base.”[13]

”After overcoming the problem of recognizing an entity in a text, the attentions of re-
searches are changed to entity disambiguation. As early as the 1990s, reference resolution
and word sense disambiguation are the important tasks of Natural Language Processing.
They deal with disambiguation of words in text so as to achieve the purpose of accurately
understanding the meaning of the text.”[13]

1.3.3 Candidate Entity Generation

Given a set of mentions ‘M’ they appear in a text to linking them. So the aim of this
step or process is to generate a candidate entity set ‘Em’ for each entity mention ‘m’ in
‘M’.

There are several methods and techniques to deal with, in order to finish this stage
with success. The success is not getting a large number of candidates, but to retrieve the
most relative words (or sentences) to the mention ‘m’ in its context. We may get one
thousand candidate entities but no one of them is the correct mapping entity, in the other
hand we may get only ten candidate entities and pull off the result that we aiming to get,
and retrieve the correct entity. So what matters is quality, not quantity.

In this part we will explain and discuss two approaches that was used largely.

7

Chapter 1. Introduction to Entity Linking

1.3.3.1 Name Dictionary Based Techniques

1.3.3.1.1 What is a name dictionary

A name dictionary is a normal dictionary has two column one for an entity and
the other one for its possible mapping entities which are a group include alternatives,
synonyms, abbreviations, nicknames...etc of that entity. And might refer to it in some
context.

We adopt this terminology:
• Ki is a line in the dictionary | were 1 < i < Dictionary length.
• Ki.name is the value of first column (name column) and Ki line.
• Ki.value is the value of second column (possible mapping entities) and Ki line.

1.3.3.1.2 Construct the name dictionary

The dictionary is constructed by exploiting specifically five features from Wikipedia
which are: Entity pages, Redirect pages, Disambiguation pages, bold phrases from the
first paragraphs, Hyperlinks in Wikipedia articles.[18]

Entity pages: each Wikipedia entity page has a title and for sure it describe a specific
entity for that choosing the title as a key and the entity was described as a value.

Redirect pages: Redirect page is a Wikipedia page that automatically avert visitors
to another page. This page Refers to another Wikipedia entity which may was an alter-
native, synonyms or abbreviation to it. We mark the title of the redirect page as a key
and the referred entity as a value.

The figure 1.3 shown below is an example of a redirect page. We note that the page’s
title is UK (considered as Ki.named) and the page that it redirect to is United Kingdom
(considered as Ki.value). And together construct a line Ki.

8

Chapter 1. Introduction to Entity Linking

Figure 1.3: example of redirect page

Disambiguation pages: In Wikipedia site, they created page just to make difference
between entities that may are very similar to each other and make one confused and not
understand to who the entity referred. This pages contains a list of them. An example is
shown in this figure 1.4:

Figure 1.4: example of disambiguation pages

9

Chapter 1. Introduction to Entity Linking

This entity “1995 World Cup” may refer to many entity such as 1995 Rugby World
Cup or 1995 FIFA Women’s World Cup. For that this page was created and we set the
page’s title as a key and the referred entities as a value.

Bold phrases from the first paragraphs: A bold phrase in any paragraphs has
an important value and gives you a good glimpse (overview) of what is the article talking
about. From Wikipedia pages we take the bold phrases from the first paragraphs as value
and the page title as a key.

Hyperlinks in Wikipedia articles: A hyperlink has a similar meaning to redirect
page so it refer to another entity. Take the anchor text and mark it as a key and the
referred page’s title as value.

1.3.3.1.3 Take advantage of the dictionary

You should wondering how we benefit from this dictionary, so here is it, Let ‘M’ be
a set of ‘m’ entity mentions in a document that we dig into linking it with a Wikipedia
entity. And let ‘Em’ be a set of candidate entity for the entity mention ‘m’ ∈ ‘M ’.

To generate candidate entity set for an entity mention depending on a name dictionary
we do a search in the key column (first column) and add the ki.vaule to ‘Em’ whenever
one of these conditions is met:

• Exact matching between the entity mention ‘m’ and ‘ki.name’
• m ∈ ki.name
• ki.name ∈ m

With this approach we generate candidates which are probably the synonyms, alter-
natives of mention entity as we explained above.

1.3.3.2 Methods Based on Search Engines

There are a lot of methods and technics that are used in order to generate appropriate
entities to an entity mention in a document. One type from them is search engines
methods.

Web search engines considered as the infrastructure of search engines methods because
are totally based on them, such as Google, Bing …etc. There are those who use the Google
search engine and make a query using the entity mention and some words that represent
its context. And retrieve just the Wikipedia Web pages from the query result to regard
them as candidate entities.[18] others like Dredze think differently a little bit and decide
to use google search engine too, but they limit the number of Wikipedia pages by adding
a new condition to be achieved before considering that page as a candidate entity which
is as following: the page must be among and appear in the first twenty results of that
search procedure.[6]

10

Chapter 1. Introduction to Entity Linking

1.3.4 Candidate Entity Ranking

After an entity linking system complete the previous process which is Candidate Entity
Generation and retrieve a set of candidate entities, all that remains is choosing the most
likely entity to be the correct mapping entity for the entity mention. We call this process
the Candidate Entity Ranking, where we do the important work, so that we do processing
on these candidate entities in order to ranking them depending on several methods and
techniques we will talk about them lately, then select the one that got the first place to
become the mapping entity which maybe correct or not.

Some systems does not select the first entity in that ranking unless it exceeded a
certain rate’s value.

1.3.4.1 Features

We start this part with the definition of these two terms the surface and the context
of an entity mention.

”The surface srfc (m) of a mention ‘m’ is the actual word or phrase used to identify
the referenced real-world instance in the text.”[8]

”The context ctxn (m) of mention ‘m’ is a multi-set of ‘n’ consecutive terms surround-
ing the mention (including its surface).”[8]

There are a lot of features are very helpful in candidate entity ranking with the aim
of selecting the correct mapping entity. We’ll talking about them briefly. But before
that, we want to mention to that we divide the set of features on two categories which are
context-independent features and context-dependent features. The difference between the
two is that the context-independent category is only care about the surface of mention
and ignore any other things. In contrast to this lastly, the context-dependent features
take into consideration the mention’s context where it appears.

1.3.4.1.1 Context-Independent Features

• Name String Comparison

As logic the first thing one shall take into consideration is string comparison for that
a lot of measures are used such as Dice coefficient score, character Dice, skip bigram Dice.
It is used to calculate how much the entity mention and a candidate entity from the set
of candidate entities Em are similar to each other.

Dice coefficient score: it is a statistical method used to compare similarity between
two strings the coefficient may be calculated for two strings, x and y using bigrams as
follows:

d =
2 ∗ nt

(nx + ny)
(1.1)

11

Chapter 1. Introduction to Entity Linking

Where nt is the number of character bigrams found in both strings, nx is the number
of bigrams in string x and ny is the number of bigrams in string y.

Skip bigram Dice: A bigram or digram (using Greek numerical prefixes) is a se-
quence of two adjacent elements from a string of tokens, which are typically letters,
syllables, or words. A bigram is an n-gram for n=2. Hence the function is as follows: [1]

sim () is the similarity function.

sim(s1, s2) =
1

N − n+ 1

N−n+1∑
i=0

h(i) =
1

N − 2 + 1

N−2+1∑
i=0

h(i) =
1

N − 1

N−1∑
i=0

h(i) (1.2)

Where :

h(i) = 1 if n-element subsequence beginning from position i in s1 appears in s2.
h(i) = 0 otherwise;
N-n+1 = number of n-element subsequence in s1.

But sometimes this feature failed to get the correct mapping entity or bring us closer
to it. For a simple reason related to the language itself. Some words differ in one letter
that change the meaning radically. For example the word night and the word fight are
very similar in writing but they have a huge different in meaning.

• Entity Popularity

This feature answer us the following question: how often a candidate entity appears
given an entity mention m?

It based on that people generally when use a word they mean (mention to) in most
cases a single meaning. For example the entity New York, the candidate entity New
York (film) is much rarer than the candidate entity New York City, and in most cases
when people mention New York, they mean the city of New York rather than the film
whose name is also New York.

Several researchers depending in this fact and define the popularity feature Pop (ei)
as the following:[18]

Pop(ei) =
countm(ei)∑

ej∈Em
countm(ei)

(1.3)

Where count m (ei) is the number of links which point to the entity ei and have the
mention form m as the anchor text.

12

Chapter 1. Introduction to Entity Linking

• Entity Type

From the brilliant features that we face the entity type feature, it is beneficial because
it based in the fact that if the entity mention m has the type x, so that it points to
an entity that have the same type x. A problem may appears when we can’t find the
candidate entity’s type from the knowledge base. To deal with, some system used Named
Entity Recognizer to identify it.

1.3.4.1.2 Context-Dependent Features

For sure Context-Independent Features have a great value and good results to mapping
an entity mention with its coordinate in a knowledge base, but it’s useful to exploit the
entity mention context and retrieve information from its surroundings sentences and words
to get better results. Here in this part, we discuss two features which are textual context
and coherence between mapping entities.

• Textual Context

There are two form to represent the context of entities that are bag of words and
concept vector in the aim to know if the entity mention m is similar, not similar or has a
certain percentage of similarity to a candidate entity e belongs to Em.

The first form is bag of words where the context of an entity is represented as a list of
words that surrounding the entity where appears or from the whole document. For the
entity mention the context is collected from the local document. but for the candidate
entities the context is collected from the summary of its Wikipedia page or from the entire
page. Another form is concept vector where each entity’s context (Whether it is a mention
entity or a candidate entity) represented as a vector. A vector a numeric representation
of a text.[18]

• Coherence between Mapping Entities

In each document there are a set of entities M we wish to link each one of them to
another entity in a knowledge base KB. Fortunately, in most cases there is a relation and
meaning between them that could lead and help us to do a perfect and success linking.

One can say that two entities are coherence and have a semantic relation if there are
many Wikipedia articles that link to both. The coherence of a candidate entity e with
each entity e’ ∈ E is calculated using the following formula of topical coherence which is
an adoption of Normalized Google Distance:[18]

CohG(U1, U2) = 1− log(max(|U1|, |U2|))− log(max(|U1 ∩ U2|))
log(|WP |)− log(min(|U1|, |U2|))

(1.4)

13

Chapter 1. Introduction to Entity Linking

Where U1 and U2 are the sets of Wikipedia articles that link to u1 and u2 respectively,
and WP is the set of all articles in Wikipedia.

1.3.4.2 Supervised ranking methods

A supervised algorithm it is an algorithm trained on input data that has been labeled
for a particular output (training data set). And it is good at classification and regression
problems such as determining what category a news article belongs to. For our task
(Entity linking) the training data set was constituted by set of pairs of entity mention
with its mapping entity.

We talk about two categories of methods which are Binary Classification Methods and
Learning to Rank Methods.

1.3.4.2.1 Binary Classification Methods

With this approach the candidate entity ranking problem was considered as a binary
classification problem where the goal is to check if an instance is true or false (zero or
one), in other word the output label takes only two different classes or values.

To adopt our problem with binary classification, a data set was constructed which
contains an entity mention m with a candidate entity ei and an output label to decide
whether the entity mention really refers to the candidate entity. If it is, it takes a positive
value, otherwise it take a negative value. We want to mention to that each entity is
represented as a numerical vector.

Like any supervised technique, a model will be generated based on that data set. So
that it takes each labeled pairs (m, ei) and used it to learn the classifier. After this
important step, a test data (pairs of entities) will passed to the classifier and return us
the label (positive or negative) for each one. Because no technique is perfect, a problem
appears out of nowhere which is the possibility of appearance of two or more positive
label for one pairs. To deal with it many system used SVM (Support Vector Machines)
ranking models.

Constructing data set with this method leads to be unbalanced due to the presence of
many candidate entities from which we choose just one entity to be the mapping entity.
For instance if the candidate entity set’s size equal to 20 (generate a data set of 20 lines),
so there is one positive instance and nineteen are negative, and so on. The problem was
that the model does not learn what makes the other class different and fails to understand
the underlying patterns that allow us to distinguish classes. That drive the researcher to
think of other ways such as learning to rank methods.

14

Chapter 1. Introduction to Entity Linking

1.3.4.2.2 Learning to Rank Methods

In this part we describe an approach to disambiguating terms that occur in plain text,
so they can be linked to the appropriate Wikipedia article. We talking about learning to
rank approach.

Learning to rank (LTR) is a class of algorithmic techniques that apply supervised
machine learning to solve ranking problems in search relevancy, and the following image
shows the typical ”LTR” flow.[12]

Figure 1.5: the typical “learning-to-rank” flow

Obviously a data set was needed for learning and testing process includes a set of pair
of entity mention and a candidate entity and the output is a score label indicates how
much the two entities are relevant to each other (for example we can take the number of
clicks on a candidate entity when a query was executed with the entity mention as the
value of that label). The correct mapping entity must have the higher score. Each pair
is represented as a vector. To do the ranking process supervised algorithms will be used
such as Polynomial Regression Function.[12]

In this pointwise approach we do not take into consideration the relation between
candidate entities, rather than in pairwise approach where the data set examples include
the entity mention m and a pair of candidate entities (ei, ej) and a label that indicates to
one if ei is more relevant to the entity mention m then ej, otherwise the label indicate to
zero.

15

Chapter 1. Introduction to Entity Linking

1.3.4.3 Unsupervised ranking method

The unsupervised learning algorithms aims to identify patterns in data sets without
having any external guidance in performing that task. We talk about two categories of
methods which are VSM Based Methods and Information Retrieval Based Methods.

1.3.4.3.1 VSM Based Methods

Vector space models are used to represent words in a continuous vector space A vector
space contains a collection of objects called vectors which are numerical representations
of words, sentence, and even documents. While a simple vector only has two dimensions,
those used in natural language processing can have thousands.[18]

The vector space model is an algebraic model that represents objects (like text) as
vectors. This makes it easy to determine the similarity between words or the relevance
between a search query and document. Cosine similarity is often used to determine
similarity between vectors.

To apply the unsupervised techniques with VSM they generate a representational vec-
tor to each of entity mention and candidate entity. Use a similarity measure to select the
correct candidate entity like TF-IDF similarity. At final process it cluster the candidate
entity with entity mention in the same cluster.

1.3.4.3.2 Information Retrieval Based Methods

Information Retrieval is the producers of finding the most relevant document that has
or include the target information the query executer (ex: a person) want to see.

In another more accurate way, Information retrieval (IR) involves retrieving infor-
mation from stored data, through user queries or pre-formulated user profiles. The in-
formation can be in any format. IR typically advances over four broad stages which
are identification of text types, document preprocessing, document indexing, and query
processing and matching the same to documents.

Some researchers think to use methods that are used in information retrieval field
to deal with entity linking problem as an information retrieval problem. In general the
most of them follow the following way to represent entities where “each candidate entity
is indexed as a separate document, and for each entity mention, they generate a search
query from the entity mention and its contextual document. Finally, the search query
is given to the candidate entity index. and the candidate entity which has the highest
relevant score is retrieved as the mapping entity for the entity mention“.[18]

16

Chapter 1. Introduction to Entity Linking

1.3.5 Unlinkable Mention Prediction

As we discuss earlier an entity linking system described by its two main process which
are candidate entity generation and candidate entity ranking. In the first process some
methods generate the set of candidate from a knowledge base, and for the second process
choose the high ranked entity to be the correct mapping entity for a mention ‘m’. until
now it looks good, but what if the set of candidate E is Nil and does not include any
candidate, also what if the system use other method to generate the candidate set which
is not related to a knowledge base and when it pick up the mapping entity notice that
the entity does not have a counterpart in the knowledge base.

Unlinkable Mention Prediction is the answer of these questions, for the two cases
many researchers mark the mention m as Unlikeable and the case is closed. But this
effect on the measures should one use when evaluate the entity linking systems which we
will discuss them later in chapter three.

Others include Unlinkable Mention Prediction process in the ranking process, for that
there is no problem unless the set of candidate entities E is Null meaning does not include
any candidate, they do nothing about that and as simple they mark the mention as
Unlikable.[18]

A reason to mark a mention as an Unlinkable entity is when the high succored can-
didate does not exceed the NIL threshold � which is a score value should a candidate
surpasses to pick it up as the correct mapping entity. There is measures to fix the value
of threshold τ .

After mark an entity as Unlinkable some researcher try to predict its corresponding
by using the methods that used in the candidate entity generation such as SVM classifier.

Other solution may be used is to added a NIL entity into the candidate entity set,
and considered NIL as a distinct candidate. If the ranker outputs NIL as the top-ranked
entity, this entity mention is considered as unlinkable. Otherwise, the top-ranked entity
is returned as the correct mapping entity.

1.4 Conclusion

In this chapte, we reviewed and summarize the significance NLP, some of its ap-
plications and briefly explained NER. Then, we have presented a comprehensive survey
for entity linking. Specifically, we have surveyed the main approaches utilized in the
three modules of entity linking systems (Candidate Entity Generation, Candidate Entity
Ranking, and Unlinkable Mention Prediction).

17

Chapter 2

Related Work

18

Chapter 2. Related Work

2.1 Introduction

Recently, a number of systems have been proposed for linking entity mentions in
text to Wikipedia pages. Such systems typically search for candidate entities and then
disambiguate them, returning either the best candidate or nil.[9]

In this chapter we take a look on what they did in this field, we discuss some NEL
system such as Bunescu and Pasca system, Cucerzan. Each one (researcher) has an idea
and how to implement it that create the difference which is a good difference should leads
to excellent systems.

2.2 Bunescu and Pasca

2.2.1 Extractor

They use Wikipedia to extract mentions and decide whether the entity is a named
entity or not. For that some rules are proposed and put to work on, which are:[3]

If e is a multiple word so that all word must be in capital case to consider e as a named
entity.

If e is one word so that the word should include two letters are in capital case to
consider e as a named entity.

If e is one word and does not contain two capital letters, and the word repeated
multiple times in the article by more than 75 % are capitalized, so e is a named entity.

2.2.2 Searcher

They started from the principle of that articles in Wikipedia has hyperlinks which
refer to other entity, wherefore the text anchor in a hyperlink is considered as an entity
mention. They build a named entity dictionary D constructed as a list of pair of a string
entry d which is mapped to a set of entities d.E that can be denoted by d in Wikipedia.
So they take the set d.E as the candidate entity set if there is a dictionary entry matching
d, where d is an entity mention extracted from hyperlinks in a Wikipedia article.[3]

2.2.3 Disambiguator

In the candidate entity ranking process they used an SVM (Support Vector Machine)
ranking model.

They use cosine similarity between the context of the mention ‘q’ and the text of the
Wikipedia article for candidate ek as the first feature, like the following function:

score(q, ek) = cos(q.T, ek.T) =
q.T

∥q.T∥
ek.T

∥ek.T∥
(2.1)

19

Chapter 2. Related Work

Where q.T and ek.T are represented in the standard vector space model. A term w
in V and its score (weight) is the tf-idf score will construct the VSM. V is generated
depending on all Wikipedia article and ignore some words that appear many times or
rare appear.

After that they denote errors with the first method, so they exploited Wikipedia
categories to get rid of these errors. For that they calculate the correlation between
context words and the categories to which ek belongs. And add it as second feature.[3]

Evaluation

They do a good work and achieve 84.8 % of the accuracy measure.

2.3 Cucerzan

2.3.1 Extractor

The ability to determine the named entities in a text has been established as an im-
portant task for several natural language processing areas, including information retrieval,
Cucerzan uses a hybrid NER tagger based on capitalization rules, web and the CoNLL-03
NER[16] shared task data statistics.[9]

At the first function he takes the document and break it up into sentences, and deter-
mines whether the beginning of each sentence is an entity (may just a part of entity) or it
is capitalized only because it the first word of a sentence. This is done based on statistics
extracted from a one-billion-word corpus, with back-off to Web statistics.[4]

2.3.2 Searcher

Cucerzan uses three features that are entity surface forms, category tags, and contexts.
Surface forms set of an entity is considered as candidate entity set and there are four
Wikipedia features to generate this set, which are: the titles of entity pages, the titles of
redirecting pages, the disambiguation pages, and the references to entity pages in other
Wikipedia articles.

2.3.3 Disambiguator

For disambiguate and linking the entities appear in a text he use the contextual and
category information extracted from Wikipedia.[4]

His idea revolves around the maximization of the agreement between the contexts of
all candidate entities of all mentions appear in a document D and the context of the
document D. And also the maximization of the agreement between categories tags of

20

Chapter 2. Related Work

any two candidate entities. Each candidate entity is represented as a vector space model
δe ∈ {0, 1}M +N where δe is defined as the following:[4]

δe
i =

{
1, if ci is a context for entity e
0, otherwise (2.2)

δe
M+j =

{
1, if tj is a category tag for e
0, otherwise (2.3)

1 < i < M ; 1 < j < N

He choose the set of entities (e1, e2, ..., en) ∈ ε(S1)Xε(S2)X...Xε(Sn) for which they
achieve the highest score or result of the following function:

arg max
(e1,...,en)∈
ε(s1)..ε(sn)

n∑
i=1

< δei |C , d > +
n∑

i=1

n∑
j=1
j ̸=i

< δei |T , δej |T >, (2.4)

We define the argmax of a function f defined on a set D as:

arg max
x∈D

f(x) = {x|f(x) ≥ f(y),∀y ∈ D} (2.5)

The arg max function returns the argument or arguments (arg) for the target function
that returns the maximum (max) value from the target function.[17]

Evaluation

This disambiguation system is evaluated on two set of data. One of them is a bunch
of article from Wikipedia (350 Random Article) Where achieve 88.3 % in the accuracy
measure and the other is a set of news stories where obtained a good result and achieve
an accuracy of 91.4 %.

2.4 UKP-UBC Entity Linking at TAC-KBP

2.4.1 Extractor

The first component in this system is the Preprocessing component in which they used
tokenization, POS-tagging, lemmatization, chunking, and named entity recognition tools
with the helping of the open source project DKPro Core.[7]

21

Chapter 2. Related Work

DKPro Core1 was initiated by the Ubiquitous Knowledge Processing Lab (UKP) at
the Technische Universität Darmstadt. And it is a software based on JAVA programming
language.

2.4.2 Searcher

Their method is a dictionary based method where used two types of them, one is
constructed depends on Wikipedia and the other one depends on Google search logs. In
the candidates retrieval process the system search about the mention m in the dictionaries,
once found it, its value should be added to the set of candidate entities E for the mention
m.[7]

A question may come to mind which is what if the searcher component doesn’t found
the mention in any dictionary? They handle this case by remove parentheses and text
in between and do a research again in dictionaries. If the problem is still appear they
remove leading ” the ” from mention and do a research again in dictionaries. If all this
solution does not lead to a result the mention m is marked as an unlinkable entity.[7]

2.4.3 Disambiguator

In their study they tried many approaches and features. They use the score of one
feature and make result depends only on it. They also use a linear combination of many
or all features with a supervised approaches.[7]

A type of features they talked about was the similarity feature where used DKPro sim-
ilarity software to calculate a score between a mention m and its candidate entities. They
apply Levenshtein and Jaro-Winkler distance. This feature is useful for misspellings.[7]

When they was helped by a context feature they used a method similar to Han and
Sun (2011) method where words in the context of the mention are compared to words
in the context of the link anchors pointing to the article of each candidate entity in
Wikipedia. Additionally to that, mention context words are weighted using the frequency
in the description and the candidate entity that acquire the high score will be chosen as
mapping entity for the mention m.[7]

In a third method they convert a Wikipedia version to a graph G = (V, E) where V
representing concepts (Wikipedia articles) and E representing relations (edges) between
them, and for more explanation in this point we can say that there is a relation between
an article a1 with another one a2, if there exist links in both directions between a1
and a2 in Wikipedia. The graph contains 2,325,876 vertices and 5,549,696 edges. With
this approach they attend to disambiguate all mentions that appear in the document
collectively. For that the Personalized PageRank algorithm that took a graph as its input
was used and they implement it using the UKB package. These ranks are used as input
features for the classifier Rank SVM (Tsochantaridis, 2006).[7]

1https://dkpro.github.io/dkpro-core/

22

https://dkpro.github.io/dkpro-core/

Chapter 2. Related Work

Evaluation

The result of this system is poor where they have only achieved 31 % in text data,
because of a problem in the candidate identification process.[7]

2.5 Lightweight Multilingual Entity Extraction and
Linking

2.5.1 Extractor

They use Simple CRFs, with only a few characteristics that may be easily extended
to other languages. Their approach performs similarly to state-of-the-art single-language
NER systems while being more adaptable to additional languages and computationally
economical.[14]

They utilize word2vec with the Continuous-Bag-of-Words (CBOW) method, 5 iter-
ations, and a window size of 5 token to learn nothing embeddings for each language.
Morphological characteristics, such as word form and capitalization, token prefixes and
suffixes (up to length 4), numerals, and punctuation, are also used. Finally, they try out
language-specific part-of-speech (POS) tags, which need very little preprocessing and are
available in over 40 languages.[14]

2.5.2 Searcher

They presume that each entity has a fundamental form (CF) in KB. The Wikipedia
page address corresponding to each KB entity is used as the base model in their stud-
ies. Candidate entities are retrieved in most NEL systems if their basic form or alias is
comparable to the tag (extended) text. And they used entity mergers for the candidate
entity retrieval system, which is based on the Fast Entity Link (FEL), and which they
briefly present below.[14]

”Fast Entity Linker (FEL) is an unsupervised approach which selects the segmentation
of an input sequence of words that maximizes the likelihood of all substrings linking
to an entity in the Knowledge Base. The model requires to calculate the conditional
probabilities of an entity given every substring of the input sequence, but avoids computing
entity to entity joint dependencies, which makes the process very efficient. As a byproduct
of this segmentation, the model selects the most likely entities that would be linked to
each substring in a sequence of words.”[14]

23

Chapter 2. Related Work

2.5.3 Disambiguator

In this work, they compare three general purposes and efficient methods: the forward-
backward algorithm, exemplar clustering, and label propagation.

The forward–backward algorithm is an inference algorithm for hidden Markov
models which computes the posterior marginals of all hidden state variables given a se-
quence of observations/emissions. This inference task is usually called smoothing. The
algorithm makes use of the principle of dynamic programming to efficiently compute the
values that are required to obtain the posterior marginal distributions in two passes. The
first pass goes forward in time while the second goes backward in time; hence the name
forward–backward algorithm.[14]

They employ exemplar clustering, which allows them to choose candidates for
cluster centroids and allocate mentions to these clusters. A preference vector with greater
(and positive) values for candidate entities’ entity embeddings and zeros for mentions’
entity embeddings can be used to start this process.[14]

”Label propagation is an umbrella term for a family of graph-based semi-supervised
algorithms. A label propagation algorithm propagates labels to unlabeled nodes in a
graph, starting with a few labeled nodes.”[14]

Evaluation

They show the accuracy of their approach using data from the TAC KBP 2013 mul-
tilingual data set (English/Spanish/Chinese) as well as Aida, a typical monolingual data
set.

In the TAC KBP-EN datasets, FWBW method achieves an F-measures the highest
percentage (61 %) compared to the others methods (1-best, Exemplar, LabelProp), while
in the TAC KBP-ES datasets, 1-best achieves the highest percentage (67.3 %) compared
to the others.[14]

24

Chapter 2. Related Work

2.6 AGDISTIS

2.6.1 Extractor

As shown in Figure 2.1, the first step is to enter an input text T and a named entity
recognition function (e.g., FOX[20]), they begin by retrieving all named entities from the
input text.[21]

Figure 2.1: overview of AGDISTIS

2.6.2 Searcher

They first identify potential resources in the KB in order to determine the right dis-
ambiguation for a certain collection of named entities. They start by making an index
of all the labels for each resource. Any collection of attributes can be used as labeling
properties in their method.[21]

2.6.3 Disambiguator

AGDISTIS is a novel named entity disambiguation method that is independent of
the knowledge base. The Hypertext-Induced Topic Search (HITS : which calculates the
most pertinent entities) method is combined with label expansion algorithms and string
similarity metrics in their approach. AGDISTIS can efficiently recognize the proper URIs
for a given collection of named entities inside an input text.[21]

Evaluation

They compared AGDISTIS approach with TagMe 2 and DBpedia Spotlight on four
different datasets are (AIDA/CONLL-TestB, AQUAINT, IITB, MSNBC) using micro
F-measure (F1).[21]

Their approach achieves an F-measures 0.59 (AIDA/CONLL-TestB), 0.54 (AQUAINT),
0.31 (IITB), 0.76 (MSNBC), While TagMe 2 and DBpedia Spotlight achieves the lowest

25

Chapter 2. Related Work

percentage of three datasets (AIDA/CONLL-TestB, AQUAINT, MSNBC), as for IITB
datasets, DBpedia Spotlight recorded the highest percentage.[21]

2.7 Conclusion

In summary, in this chapter we reviewed works that are related to entity linking sys-
tems that was created and implemented previously. Some of them provided good results,
and some of them encountered problems and did not achieve the required. Anyway, this
domain still developing and definitely a significant number of systems will reveal in the
future to repairing imperfections and loopholes of the ancient systems.

26

Chapter 3

Disambiguation and Linking System

27

Chapter 3. Disambiguation and Linking System

3.1 Introduction

This chapter is the main chapter in this project where we will dive into our work and
describe our systems and experiments that we have done. Also we walks through datasets
that we have created and talk about the approach we followed to make this work done.

3.2 Datasets

Numerous numbers of datasets are available online for the research community to
train and evaluate their approaches. Finding the right dataset that contains all words of
a language or all the situation and context where a mention may appear. And with the
right dataset properties in terms of usability format and labelling results, is not an easy
task.

We found two dataset which are KWDW1 and YAGO2, we choose to work on KWDW
dataset because it has a simple structure and it is well documented.

3.2.1 Dataset structure

At first glance, we thought to use the dataset as it is. But in fact, it did not meet our
requirements at all, which prompted us to change its structure and with emphasis only
on the information that we need.

We will not talk about KDWD structure, instead of that we will talk and discuss
KWDW_R dataset which is original from KDWD but in other structure.

Before we start, we want to mention to that we have created another dataset with the
same structure but the origin was different which is Wikipedia website. We talk about it
in details in the ‘TD Dataset Creation process’ section.

In this figure 3.1 we present an example of it:

1https://yago-knowledge.org/downloads/yago-4
2https://www.kaggle.com/kenshoresearch/kensho-derived-wikimedia-data

28

https://yago-knowledge.org/downloads/yago-4
https://www.kaggle.com/kenshoresearch/kensho-derived-wikimedia-data

Chapter 3. Disambiguation and Linking System

Figure 3.1: example of dataset structure

In the following lines we will give a description of each column in dataset:
Text: a paragraph from Wikipedia contains mentions.

Category: describe the type of the text, it may be Science, Mathematics, Sports or
any other category. For this feature we use Google Natural Language API3 which is ma-
chine learning project to classify texts into categories. This API given us the opportunity
to distinguish texts a little more from each other. The following snippet shows how to
call the API.

1 from google.cloud import language_v1
2 def classify(text):
3 Document = language_v1.Document(
4 Content = text, type_= language_v1.Document.Type.PLAIN_TEXT
5)
6 language_client = language_v1.LanguageServiceClient()
7 response = language_client.classify_text(request={'document': document

})
8 return response

Listing 3.1: retrieve category function

Confidence: It express the quality of Google classifier. The closer to one, the better.

Mention: it is a named entity appears in the text.

Mention length: Is the length of mentions.

Mention context: we choose a window of 3 mentions that appear in the same text
and save it as mention context.

3https://cloud.google.com/natural-language/docs/setup

29

https://cloud.google.com/natural-language/docs/setup

Chapter 3. Disambiguation and Linking System

item: It may be referred to it by the mention, and we extracted it from the dictionary.

item length: is the length of the candidate entity length.

item context: we choose a window of 3 entities which are appear in Wikipedia page
related to the candidate and save it as candidate context.

Page views: how many times the Wikipedia page is visited.

CDCM sim: (Cosine Distance Count-vectorizer Method). It is the result of cosine
distance between the mention and candidate. We implement the following snippet of code
to do the work.

1 def CosineDistanceCountvectorizerMethod(m, e):
2

3 allsentences = [m , e]
4

5 # text to vector
6 vectorizer = CountVectorizer()
7 all_sentences_to_vector = vectorizer.fit_transform(allsentences)
8 text_to_vector_v1 = all_sentences_to_vector.toarray()[0].tolist()
9 text_to_vector_v2 = all_sentences_to_vector.toarray()[1].tolist()

10

11 # distance of similarity
12 cosine = distance.cosine(text_to_vector_v1 , text_to_vector_v2)
13

14 return cosine

Listing 3.2: calculate CDCM similarity function

Spacy sim: is the result of similarity calculation between the mention and the can-
didate using Spacy library. We implement the following snippet of code to do the work.

1 def SpacySimilarity(mention , candidate):
2

3 doc1 = nlp(mention)
4 doc2 = nlp(candidate)
5

6 if (doc1.has_vector) & (doc2.has_vector):
7 return doc2.similarity(doc1)
8 else:
9 return cosine_distance_wordembedding_method(mention ,candidate)

Listing 3.3: calculate spacy similarity function

CDWM sim: (Cosine Distance Word-Embedding Method) is the result of the appli-
cation of the code below and express how much the mention and the candidate entity are
similar to each ether using CDW method. We using Glove-Model4 for word embedding.
We implement the following snippet of code to do the work.

4https://www.kaggle.com/watts2/glove6b50dtxt

30

https://www.kaggle.com/watts2/glove6b50dtxt

Chapter 3. Disambiguation and Linking System

1 def cosine_distance_wordembedding_method(s1, s2):
2 try:
3 vector_1 = np.mean([model[word] for word in preprocess(s1)],axis=0)
4 vector_2 = np.mean([model[word] for word in preprocess(s2)],axis=0)
5 cosine = scipy.spatial.distance.cosine(vector_1 , vector_2)
6

7 return cosine
8 except:
9 return CosineDistanceCountvectorizerMethod(s1,s2)

Listing 3.4: calculate CDWM similarity function

CTX CDCM sim: it similar to CDCM sim but the calculation of similarity was
between the context of the mention and the context of the candidate.

CTX spacy sim: it similar to Spcay sim but the calculation of similarity was between
the context of the mention and the context of the candidate.

CTX CDWM sim: it similar to CDWM sim but the calculation of similarity was
between the context of the mention and the context of the candidate.

Class: if it equal to 0 means that the candidate is not the correct mapping entity to
the mention. Else(equal to 1) means that the mentions refer to that candidate in that
context.

3.2.2 Create Dictionary

We have created three dictionaries one for the First Dataset (KWDW_R Dataset)
and the other two for the Second Dataset (our TD Dataset). Below we will explain the
steps that we have followed for creating dictionaries in detail:

Note: TD is acronym of our names (Toukali and Djaafri), R is acronym of recon-
structed.

3.2.2.1 Dictionary for kwdw dataset

This dataset was created depending on KWDW dataset, exploited two files out of
seven. And it has 3 steps which are:

- Extract the text, alias and target id from ”link annotated text.jsonl”.
- Step two we take the target id we extracted from the jsonl file and compare it with

the targat ids in the file ”page.csv”. When we find the same target id, we get (page views
and item id).

- Put all information that extracted and calculated to a CSV file ”KWDW_R Dictio-
nary.csv”, which consists of (alias, item id and page views).

31

Chapter 3. Disambiguation and Linking System

This figure 3.2 shows all the information we saved for one row in the ”KWDW_R
Dictionary.csv” and shape for this dictionary:

Figure 3.2: example of kwdw dictionary

3.2.2.2 Two dictionary for our dataset

We created these two datasets from scratch exploiting the large number of articles in
Wikipedia. We follow these steps to make this work done:

At first, we consulting a Wikipedia page, whatever it was. Then we extract all para-
graphs in that page and consider it as texts. When extracting these texts, we find that
there are texts that do not have any link. In this case we cancel those texts, because we
don’t need those texts to create the Dictionary. After that we extract all hyperlinks that
are in each paragraph and filter it; that is, delete all the duplicates or wrong hyperlinks.
Saving only the links linking to another Wikipedia page. At this point, we extract the
context for each mentions from all texts, then we take the first mention hyperlink from
the first text and going to the next page via that it. When entering this page, we extract
context for an item, then we extract the hyperlink of the page information and enter
through it to the next page, in which we find all the information about it, and from here
we retrieve the (page id, page views and wiki data item id), from the last we extract his
item hyperlink, which helps us retrieve Item label When we finish retrieving all of this
information that we mentioned.

• We save part of the information in a CSV file ”first dictionary.csv”, which consists
of (text, mentions, mentions contexts and Item label).

This figure 3.3 shows all the information we saved for one row in the ”first dictio-
nary.csv” and shape for this dictionary:

Figure 3.3: example of first dictionary

32

Chapter 3. Disambiguation and Linking System

• And the second part in another CSV file ”second dictionary.csv”, which consists of
(mentions, page ids, page views, item ids, item labels and item context).

This figure 3.4 shows all the information we saved for one row in the ”second dictio-
nary.csv” and shape for this dictionary:

Figure 3.4: example of second dictionary

Then we repeat this process on all hyperlinks in all texts. When you finish saving
all information from the first page, we are going to the second page via the first mention
hyperlink. And we do the same process that we mentioned above.

3.2.3 Dataset Creation process

3.2.3.1 KWDW_R Dataset Creation process

This dataset was created depending on KWDW dataset, exploited four files out of
seven. And it has 8 steps which are:

- Extract the text and mentions from ”link annotated text.jsonl”.
- Execute Google API given it the text as input and retrieve a category as output.
- Console the ”kwdw Dictionary.csv” to get the page views and item id.
- Generate mention context.
- Generate candidate entities for each mention with the help of the dictionary.
- Extract the candidate context from its Wikipedia page.
- Calculate the similarities between mention and each candidate.
- Put all information that retrieved and calculated to a final CSV file ”KWDW_R

Dataset .csv”.
- Repeat until the text number 5000 in the ljson file.

3.2.3.2 TD Dataset Creation process

This dataset was created depending on two files (first dictionary.csv and second dic-
tionary.csv), and it has 4 steps which are:

- Recover first text to mention, mention contexts and Item label from the file ”first
dictionary.csv”.

33

Chapter 3. Disambiguation and Linking System

- Step tow we take the mention we extracted from the first CSV file and compare it
with the mentions in the file ”second dictionary.csv”. When we find the same mention,
we get (mentions, page ids, page views, item ids, item labels and item context).

- Execute Google API given it the text as input and retrieve a category as output.
- Calculate the similarities between mention and each item.
This explanation is on one row, when we extracted this information we put it in a

final CSV file ”TD Dataset.csv”, then we repeat the same process on all rows.

3.3 First Experiment

As a first experiment that we tried, we started our exploration for this domain (Named
Entity Linking) by created a basic system that depends on and Dictionary and Search
Engine method to generate the set of candidates regarding to a mention. And depends
on page views and popularity features of a candidate to choose the appropriate candidate
that likelihood being the mapping entity for a mention.

3.3.1 Named entity recognition

NEL and NER are two parts inseparable, because it’s axiomatic that there is no way
to linking any word if we did not run the NER process and extract the entities from a
text. So we can say that NER is the first step and NEL is its complement.

3.3.1.1 Spacy NER Implementation

Because it’s not our main part that we should tackle with, we just used the spacy
implementation to extract entities. As we know there are many types of entities such
person, organization, state …etc.

In Spacy library they define a set of types from which a type will be assigned to an
extracted entity. For a reason we dropped some types like date and time - they might
don’t help us - and just used the following ones:

TYPE DESCRIPTION
PERSON People, incuding fictional

NORP Nationalities or religious or political groups
ORG Companies, cities, states
GPE Countries, cities, states
LOC Non-GPE locations, mountain ranges, bodies of water

PRODUCT Objects, vehicles, foods, ect (Not services)
EVENT Named hurricanes, battles, wars, sports events, etc

Table 3.1: Spacy types

34

Chapter 3. Disambiguation and Linking System

Using this snippet of code do the work perfectly:

1 import spacy
2

3 def GetEntities(sentence):
4 doc = nlp(sentence)
5 entities = []
6 for ent in doc.ents:
7 if ent.label_ == 'ORG' or ent.label_ == 'GPE' or ent.label_ == '

PERSON' or ent.label_ == 'NORP' or ent.label_ == 'FAC' or ent.label_ ==
'LOC' or ent.label_ == 'PRODUCT' or ent.label_ == 'EVENT' or ent.label_
== 'WORK_OF_ART' or ent.label_ == 'LAW':

8 entities.append(ent)
9 #print(ent.label_)

10 return entities

Listing 3.5: Spacy NER code

3.3.1.2 Evaluation

Unfortunately, when we evaluated the result we didn’t get all mentions that supposed
to be extracted from texts. A set of metrics was applied to evaluate the Spacy NER
System.

This table 3.2 shows the results on 3000 texts from KWDW dataset:

precision Recall f1 measure Accuracy
Spacy NER System 0.66 0.68 0.67 0.67

Table 3.2: Spacy NER evaluation

3.3.2 Candidate entity generation

Candidate entity generation is the second step in the pipeline, but in our case it
became the first one. We take a text with mentions that appeared in it. And we trying
two different methods to retrieve the set of candidate entities.

3.3.2.1 Search engine method

In this method we utilized a Wikipedia Python API5 to execute a search on Google
search engine and excluded the result to be just from Wikipedia and we took only the
first twenty page as candidate entities.

5https://www.mediawiki.org/wiki/API:Search

35

https://www.mediawiki.org/wiki/API:Search

Chapter 3. Disambiguation and Linking System

3.3.2.2 Dictionary method

For this method we enlisted a dictionary contains a thousands of couples (mention,
candidate) we’ll talk about in Datasets section.

we did a search operation to find the mention in that dictionary and retrieve the
appropriate candidate and add it to the set of candidate entities.

3.3.3 Named entity linking

The third process (second in our case) is linking the entity that appears in a text to
one from bunch of entities which was nominated to be the appropriate one to the mention.
For this step we exploited two features separately.

3.3.3.1 Using Page views feature

In this approach we utilized page views feature as the only criterion to determine which
candidate is the correct mapping entity to the mention. We used it when generating the
set of candidate entities with search engine method. Why? Because this information
(page views) is accessible and easy to retrieve directly from Wikipedia page. If fact is still
remaining one more step but it remains an easy operation. As simple the page that has
the higher views is the page that was selected to be the suitable candidate.

3.3.3.2 Using Popularity feature

In this approach we utilized popularity feature, we talked about it in chapter one,
to decide whether a candidate entity is the correct one or not, and it’s defined as the
following:

Pop(ei) =
countm(ei)∑

ej∈Em
countm(ei)

(3.1)

We used this feature when generating the set of candidate entities with the helping
of the dictionary. Why? For the same reason we choose page views with search engine
because it’s easy and simple, we choose popularity with dictionary because is somehow
simple to retrieve the count of a candidate regarding to a mention. In the other hand it
is a little complex to bring back the page views. In view of this fact we just be content
with popularity.

Note: you might be wondering what is relation between a candidate entity and a
Wikipedia page, here is the answer. At first, an item is an object in Wikidata6, it has
title and description and other properties. And it is related only to one Wikipedia page.

6https://www.wikidata.org/

36

https://www.wikidata.org/

Chapter 3. Disambiguation and Linking System

Second, in this problem we consider that a mention refers to one item or more and
candidate entities are items.

Candidate entity ⇒ is ⇒ Item ⇒ relatedto ⇒ Wikipediapage ⇒ has ⇒ viewsnumber

3.3.3.3 Evaluation of two methods

We evaluated this two methods on 3000 texts include X mentions from KWDW (Ken-
sho Derived Wikimedia Data) dataset.

These tables shows the results:

precision Recall f1 measure Accuracy
page views with search engine method 0.44 0.47 0.46 0.45

Table 3.3: evaluation of first method

precision Recall f1 measure Accuracy
popularity with dictionary method 0.56 0.57 0.55 0.53

Table 3.4: evaluation of second method

This results did not satisfy our needs and did not match with our goals. So we thought
to create a new system with other approach which is what it was. And we will get across
it in the next sections.

3.4 Second Experiment

Finally, we got to this section, where we will talk about our efficient system using
some of machine learning methods such logistic regression and random forest.

It is important to know the data you work on. So we have started with this essential
process where we dived into the data and explored it with a good manner. And In order
to understand our data, we looked at each feature (column) and have tried to understand
their meaning and relevance to the class column.

3.4.1 Dataset Correcting

From those charts below, we can conclude that there are many feature aren’t configured
yet to depend on them and train our model. We can see that the ’spacy sim’ feature does
match our perspective because it should create a graph similar to logistic graph. It is the
same thing with ‘CDCM sim’ and ‘CWCM sim’ features.

37

Chapter 3. Disambiguation and Linking System

Figure 3.5: spread chart for three features

Due to a potential error with the similarity functions, a false values were calculated
and added to Spacy sim column cells and to other also. When we plot their charts we
notice that lower values which means that the mention and the candidate are not similar
to each ether are in the same row with a value of ‘1’ in the column named ‘class’. Instead
of that it is supposed to be a value of 0 in that cell. So we did a filtering operation, and
saved just the rows that satisfies these conditions:

A cell value in Spacy sim column greater than 0.5 and Cell value in class Columne
qual to one.

Cell value in Spacy sim column smaller than 0.5 and Cell value in class Column equal
to zero.

we did the same filtering to the other two similarities.
The following figure 3.6 shows how the data in that column become much better, and

serves our task with a higher quality.

Figure 3.6: spread chart for three features edited

3.4.2 Dataset Cleaning

Data cleaning is the process of fixing or removing incorrect, corrupted, incorrectly
formatted, duplicate, or incomplete data within a dataset. we started exploring the data
by plotting the class count shown on figure 3.7 and understanding it can help us a lot for
training an effective model.

38

Chapter 3. Disambiguation and Linking System

Figure 3.7: class count plot

In this figure 3.7 we can conclude that the data is unbalanced where we can see that
65 % percent are zeros and 35 % are ones. We will deal with this small problem later.

Figure 3.8: null count

From this one, we notice that a lot of rows has a null cells in the category column.
On the contrary there are a little of nulls in other columns. To tackle this problem, we
fill all the null cells in the category column with the category ‘Other’. So we avoid losing
a large number of rows containing a significant information.

From a different angle, we can see a problem. If we change the null cells in category
column by ’Other’, it maybe lead to error because of the fact that the category cell was

39

Chapter 3. Disambiguation and Linking System

filled by null cause of a connection error or accidental error from Google API. but in real,
the text has a category(was Not ’Other’). so we prefer to drop those lines, sacrificing that
significant information.

For the other columns we fill them by the mean of each column.the mean is given by
the total of the values of the colum divided by the number of rows. the mean is equal to:

x =
1

n

n∑
1

xi (3.2)

After completing this operation we plot the chart again, and here it is figure 3.9 the
result, no cell is null!

Figure 3.9: null count

3.4.3 Feature Selection

In order to select the features that make our models learn in an efficient way, we did
an evaluation test on TD dataset to each feature individually, using the three classifiers
LR, DT and RF. Then we select features with an accuracy of more than 80 % percent
and drop the others. We don’t know if this selecting method do the trick or not, but
the results of models trained on those features can prove its effectiveness. The table 3.5
shows 6 features that reach the threshold which are: Category, Mention length, Mention
context, Item length, Item context, Spacy sim.

40

Chapter 3. Disambiguation and Linking System

Logistic Regression Decision Tree Random Forest
Category 0.83 0.85 0.86

Confidence 0.69 0.71 0.70
Mention length 0.81 0.83 0.84
Mention context 0.85 0.86 0.86

Item length 0.84 0.84 0.85
Item context 0.86 0.86 0.86
Page views 0.58 0.65 0.67
CDCM sim 0.70 0.72 0.71
Spacy sim 0.80 0.82 0.86

CDWM sim 0.69 0.70 0.71
CTX CDCM sim 0.65 0.69 0.72
CTX spacy sim 0.69 0.70 0.70

CTX CDWM sim 0.68 0.69 0.69

Table 3.5: features evaluation

3.4.4 Training Models

The experiment was carried out using three classifier models, namely: logistic regres-
sion, decision tree, Random Forests.

Logistic Regression [10] is a classifier, based on a logistic regression function also
called a sigmoid function. The decision trees method [15] classifies data into branch
segments including a root node, internal nodes and leaf nodes. Random Forests (RF) [2]
classification works by joining several decision trees together to correct over-fitting to the
training set of the decision trees.

We have trained our models on a splitted part represent 70 % from the dataset. As
we know the trainer accept only numerical values and does not accept string values for
that we convert columns that contains values of type string or Boolean or the categorical
columns to became numerical values. We utilized for this step the TF-IDF Vectorizer for
SKLearn library. The snippet of code below shows how we convert it.

1 from sklearn.feature_extraction.text import TfidfVectorizer
2

3 vectorizer = TfidfVectorizer(stop words='english', max features=1500)
4 x1_train_pre_tfidf = vectorizer.fit(x1_train)
5 x1_train_tfidf = x1_train_pre_tfidf.transform(x1_train)
6 x1_test_tfidf = x1_train_pre_tfidf.transform(x1_test)

Listing 3.6: TF-IDF vectorizer from SKLearn library

We convert each categorical or textual column separately, and concate them together
in one pandas DataFrame. After this the data was ready to enter the trainer as input.

For each method we import the class that is responsible to do the work, and then
create an instance from that class. The instance has a method called ‘fit’ that accept

41

Chapter 3. Disambiguation and Linking System

data as input. The next few lines we put in your hands the implementation of each one
of them.

Using logistic Regression

1 from sklearn.linear_model import LogisticRegression
2

3 lr_model = LogisticRegression(solver='lbfgs',max_iter=2000,penalty='l2', C
=3.1)

4 lr_model.fit(pd_x6_train , y_train)

Listing 3.7: logistic regression code

Using decision tree

1 from sklearn.tree import DecisionTreeClassifier
2

3 clf = DecisionTreeClassifier(max_depth=None, min_samples_split=2,
random_state=0)

4 clf.fit(train , y_train)

Listing 3.8: decision tree code

Using random forest

1 from sklearn.ensemble import RandomForestClassifier
2

3 clf = RandomForestClassifier(n_estimators=100, max_depth=None,
min_samples_split=2, random_state=0)

4 clf.fit(train , y_train)

Listing 3.9: random forest code

3.4.5 Testing and evaluation

We have tested our models on a splitted part represent 30% from the datasets(TD
and KWDW_R). And the result of the experiment is presented in this section.

TD dataset convolution matrixes shown in figure 3.10 shows that logistic regression
succeed on 89.31 % of predictions it made and fail on 10.69 %. And decision tree classifier
succeed on 94.27 % of predictions it made and fail on 5.73 %. And random forest succeed
on 92.38 % of predictions it made and fail on 7.63 %.

KWDW_R dataset convolution matrixes shown in figure 3.11 shows that logistic re-
gression succeed on 83.71 % of predictions it made and fail on 16.29 %. And decision tree
classifier succeed on 84.7 % of predictions it made and fail on 15.3 %. And random forest
succeed on 97.88 % of predictions it made and fail on 2.12 %.

42

Chapter 3. Disambiguation and Linking System

Figure 3.10: TD dataset’s convolution matrixes

Figure 3.11: KWDW_R dataset’s convolution matrixes

43

Chapter 3. Disambiguation and Linking System

From the following tables we can notice that the random forest classifier achieved
abetter result than the rest, reaching ninety-two percent on the accuracy metric. The
logistic classifier obtained eighty-nine percent on the same metric and ranked last. The
tree decision ranked second and rich a score of ninety-one percent on the accuracy measure.

Table 3.6: TD dataset evaluation

(A) Decision Tree

precision recall f1 score accuracy
0 0.91 0.94 0.93 0.91
1 0.92 0.87 0.89

(B) Logistic Regression

precision recall f1 score accuracy
0 0.90 0.92 0.91 0.89
1 0.89 0.85 0.87

(C) Random Forest

precision recall f1 score accuracy
0 0.92 0.96 0.94 0.92
1 0.94 0.88 0.91

Table 3.7: KWDW_R dataset evaluation

(A) Decision Tree

precision recall f1 score accuracy
0 0.88 0.89 0.88 0.85
1 0.79 0.77 0.78

(B) Logistic Regression

precision recall f1 score accuracy
0 0.87 0.89 0.88 0.84
1 0.77 0.75 0.76

(C) Random Forest

precision recall f1 score accuracy
0 0.88 0.92 0.90 0.86
1 0.83 0.76 0.80

3.4.6 improve dataset

Before we close this section, an enhancement is still available to do. Based on the
fact that the database is not balanced and it is important thing for the trainer to have
a balanced data in the aim of achieving a better result. Returning to the figure 3.7 that
shows the number of samples with class 1 and the samples with class 0 in TD dataset.

We extract some rows from KWDW_R dataset that has the value ‘1’ in the ‘class‘
column. And add them to TD dataset, In order to get a new balanced dataset.

44

Chapter 3. Disambiguation and Linking System

Figure 3.12: class count plot

We did the same experiment on this dataset using the three methods, applying the
same function of filtering and cleaning. After this change, we observed an increase of 1
percent for all three method on the accuracy measure. And the tables 3.8 bellow shows
the result. It confirms the importance of balancing the dataset.

The convolution matrixes shown in figure 3.13 shows that logistic regression succeed
on 91.56 % of predictions it made and fail on 8.44 %. And decision tree classifier succeed
on 94.27 % of predictions it made and fail on 5.73 %. And random forest succeed on 93.73
% of predictions it made and fail on 6.27 %.

Figure 3.13: TD dataset’s convolution matrixes

45

Chapter 3. Disambiguation and Linking System

Table 3.8: balanced dataset evaluation

(A) Decision Tree

precision recall f1 score accuracy
0 0.91 0.93 0.92 0.92
1 0.93 0.90 0.92

(B) Logistic Regression

precision recall f1 score accuracy
0 0.89 0.91 0.90 0.90
1 0.91 0.89 0.90

(C) Random Forest

precision recall f1 score accuracy
0 0.93 0.95 0.94 0.94
1 0.94 0.93 0.94

3.5 Conclusion

In this chapter we have presented all experiments that we tried and tested such as the
first system which didn’t live up to the hopes. Then we presented our datasets where we
applied three machine learning methods on them. For our task we notice that Random
Forest method works well and achieve higher scores on different datasets.

46

General Conclusion

In this thesis, we presented two approaches used to solve named entity linking prob-
lem. The first one depends on probabilities and the second depends on machine learning
algorithms.

In chapter one, we have the entity linking problem on general and we talked about
what is it, and what features are exploited to create linking systems. We particularized a
part of the talk about familiar approaches that followed to handle the problem. In chapter
two we presented four systems such as Cucerzan, UKP-UBC system. We discussed them
and show their perspectives and results. In chapter three we build two searchable alias
dictionary to generate referent Wikipedia articles for the given mentions. Each one has
its structure, but they’re not very different from each other. We generated two datasets
based on Wikipedia and KWDW dataset each one related with one dictionary. We utilized
these two datasets separately and combined to train our models using logistic regression,
decision tree and random forest.

Our models achieve 94 % and 92 % on accuracy metric using the combined dataset
when we add rows from KDWD dataset to our dataset that we build depending on
Wikipedia article and Wikidata site. Those rows are from class ‘1’, and after adding
them the dataset become balanced which made it easy to achieve this result.

As a future work, we plan to apply more machine learning methods on our dataset
and may achieve a higher result, furthermore we can dive into deep learning method such
RNN. And we thought about adding more feature to the dataset which could constitute
a high value feature and make the models more efficient. Because our native language
(we’re talking about Arabic language) we plan to construct a similar dataset from Arabic
Wikipedia Articles and apply those ML methods on them and monitor its effectiveness.

47

References

[1] Adio Akinwale and Adam Niewiadomski. “Efficient Similarity Measures for Texts
Matching”. en. In: (2015), pp. 7–28. url: https://core.ac.uk/download/pdf/
53096864.pdf (visited on 05/13/2021).

[2] L. Breiman. “Random Forests”. en. In: (2001), pp. 5–32. (Visited on 07/15/2021).
[3] Razvan Bunescu and Marius Pasca. “Using Encyclopedic Knowledge for Named En-

tity Disambiguation”. en. In: (Apr. 2006), pp. 9–16. url: https://aclanthology.
org/E06-1002.pdf (visited on 05/20/2021).

[4] Silviu Cucerzan. “Large-Scale Named Entity Disambiguation Based on Wikipedia
Data”. en. In: (June 2007), pp. 708–716. url: https://aclanthology.org/D07-
1074.pdf (visited on 05/20/2021).

[5] Elizabeth D.Liddy. Natural Language Processing. 2001.
[6] Mark Dredze et al. “Entity Disambiguation for Knowledge Base Population”. en.

In: (Aug. 2010), pp. 277–285. url: https://aclanthology.org/C10-1032.pdf
(visited on 05/06/2021).

[7] Nicolai Erbs et al. “UKP-UBC Entity Linking at TAC-KBP”. en. In: (2012), pp. 1–
6. url: https://www.ixa.eus/sites/default/files/dokumentuak/3450/KBP_
UKP_UBC.pdf (visited on 06/05/2021).

[8] Toni Gruetzea et al. “CohEEL: Coherent and Efficient Named Entity Linking through
Random Walks”. en. In: (June 2018), pp. 1–25. url: https://hpi.de/fileadmin/
user_upload/fachgebiete/naumann/publications/2016/coheel_jwskg.pdf
(visited on 05/10/2021).

[9] Ben Hachey et al. “Evaluating Entity Linking with Wikipedia”. en. In: (May 2012),
pp. 1–48. url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.461.1494&rep=rep1&type=pdf (visited on 05/16/2021).

[10] S. L. C. Houwelingen and J. C. Van. “Ridge Estimators in Logistic Regression”. en.
In: (1992), pp. 95–108.

[11] Diksha Khurana et al. “Natural Language Processing: State of The Art, Current
Trends and Challenges”. en. In: (Aug. 2017), pp. 1–25. url: https://arxiv.org/
ftp/arxiv/papers/1708/1708.05148.pdf (visited on 04/02/2021).

[12] Tie-Yan Liu. “Learning to Rank for Information Retrieval”. en. In: (2009), pp. 225–
331. url: https://shortest.link/12WL (visited on 05/16/2021).

48

https://core.ac.uk/download/pdf/53096864.pdf
https://core.ac.uk/download/pdf/53096864.pdf
https://aclanthology.org/E06-1002.pdf
https://aclanthology.org/E06-1002.pdf
https://aclanthology.org/D07-1074.pdf
https://aclanthology.org/D07-1074.pdf
https://aclanthology.org/C10-1032.pdf
https://www.ixa.eus/sites/default/files/dokumentuak/3450/KBP_UKP_UBC.pdf
https://www.ixa.eus/sites/default/files/dokumentuak/3450/KBP_UKP_UBC.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/publications/2016/coheel_jwskg.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/publications/2016/coheel_jwskg.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.461.1494&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.461.1494&rep=rep1&type=pdf
https://arxiv.org/ftp/arxiv/papers/1708/1708.05148.pdf
https://arxiv.org/ftp/arxiv/papers/1708/1708.05148.pdf
https://shortest.link/12WL

References

[13] GONGQING WU(IEEE Member), YING HE, and XUEGANG HU. “Entity Link-
ing: An Issue to Extract Corresponding Entity With Knowledge Base”. en. In: (Mar.
2018), pp. 6220–6231. url: https://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=8246707.

[14] Aasish Pappu, Roi Blanco, and Yashar Mehdad. “Lightweight Multilingual Entity
Extraction and Linking”. en. In: (Feb. 2017), pp. 1–10. url: http://www1.cs.
columbia.edu/~kapil/documents/wsdm17nel.pdf (visited on 06/17/2021).

[15] J. R. Quinlan. “Induction of decision trees”. en. In: (1986), pp. 81–106.
[16] E.F. Tjong Kim Sang and F. De Meulder. “Introduction to the CoNLL-2003 shared

task: Language-independent named entity recognition”. en. In: (2003), pp. 142–147.
url: https://link.springer.com/content/pdf/10.1007/978-3-319-11964-
9_33.pdf (visited on 07/15/2021).

[17] Mark Schmidt. “Argmax and Max Calculus”. en. In: (Jan. 2016), pp. 1–3. url:
https://www.cs.ubc.ca/~schmidtm/Documents/2016_540_Argmax.pdf (visited
on 05/26/2021).

[18] Wei Shena, Jianyong Wang(Senior Member IEEE), and IEEE) Jiawei Han(Fellow.
“Entity Linking with a Knowledge Base: Issues, Techniques, and Solutions”. en.
In: (May 2014), pp. 1–20. url: http : / / www . projectsgoal . com / download _
projects/cloud-computing/cloud-computing-projects-GCC00111.pdf (vis-
ited on 05/05/2021).

[19] Sonit Singh. “Natural Language Processing for Information Extraction”. en. In:
(July 2018), pp. 1–24. url: https://arxiv.org/pdf/1807.02383.pdf.

[20] Rene Speck and Axel-Cyrille Ngonga Ngomo. “Ensemble Learning for Named Entity
Recognition”. en. In: (July 2020), pp. 520–534. url: https://link.springer.com/
content/pdf/10.1007/978-3-319-11964-9_33.pdf (visited on 07/06/2021).

[21] Ricardo Usbeck et al. “AGDISTIS - Graph-Based Disambiguation of Named Entities
using Linked Data”. en. In: (Oct. 2014), pp. 1–15. url: https://link.springer.
com/content/pdf/10.1007/978-3-319-11964-9_29.pdf (visited on 07/03/2021).

49

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8246707
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8246707
http://www1.cs.columbia.edu/~kapil/documents/wsdm17nel.pdf
http://www1.cs.columbia.edu/~kapil/documents/wsdm17nel.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-11964-9_33.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-11964-9_33.pdf
https://www.cs.ubc.ca/~schmidtm/Documents/2016_540_Argmax.pdf
http://www.projectsgoal.com/download_projects/cloud-computing/cloud-computing-projects-GCC00111.pdf
http://www.projectsgoal.com/download_projects/cloud-computing/cloud-computing-projects-GCC00111.pdf
https://arxiv.org/pdf/1807.02383.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-11964-9_33.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-11964-9_33.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-11964-9_29.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-11964-9_29.pdf

	ACKNOWLEDGEMENTS
	Abstract
	Résumé
	 ملخص
	General Introduction
	Introduction to Entity Linking
	Introduction
	Natural Language Processing
	NLP applications
	 1.2.1.1 Machine Translation
	 1.2.1.2 Text Categorization
	 1.2.1.3 Question-Answering
	 1.2.1.4 Information Extraction
	 1.2.1.5 Dialogue System
	Named Entity recognition

	Named Entity Linking
	What is Named Entity Linking
	Why Named Entity Linking
	Candidate Entity Generation
	 1.3.3.1 Name Dictionary Based Techniques
	 1.3.3.1.1 What is a name dictionary
	 1.3.3.1.2 Construct the name dictionary
	 1.3.3.1.3 Take advantage of the dictionary
	 1.3.3.2 Methods Based on Search Engines
	Candidate Entity Ranking
	 1.3.4.1 Features
	 1.3.4.1.1 Context-Independent Features
	 1.3.4.1.2 Context-Dependent Features
	 1.3.4.2 Supervised ranking methods
	 1.3.4.2.1 Binary Classification Methods
	 1.3.4.2.2 Learning to Rank Methods
	 1.3.4.3 Unsupervised ranking method
	 1.3.4.3.1 VSM Based Methods
	 1.3.4.3.2 Information Retrieval Based Methods
	Unlinkable Mention Prediction

	Conclusion

	Related Work
	Introduction
	Bunescu and Pasca
	Extractor
	Searcher
	Disambiguator

	Cucerzan
	Extractor
	Searcher
	Disambiguator

	UKP-UBC Entity Linking at TAC-KBP
	Extractor
	Searcher
	Disambiguator

	Lightweight Multilingual Entity Extraction and Linking
	Extractor
	Searcher
	Disambiguator

	AGDISTIS
	Extractor
	Searcher
	Disambiguator

	Conclusion

	Disambiguation and Linking System
	Introduction
	Datasets
	Dataset structure
	Create Dictionary
	 3.2.2.1 Dictionary for kwdw dataset
	 3.2.2.2 Two dictionary for our dataset
	Dataset Creation process
	 3.2.3.1 First Dataset Creation processt
	 3.2.3.2 Second Dataset Creation process

	First Experiment
	Named entity recognition
	 3.3.1.1 Spacy NER Implementation
	 3.3.1.2 Evaluationn
	Candidate entity generation
	 3.3.2.1 Search engine method
	 3.3.2.2 Dictionary method
	Named entity linking
	 3.3.3.1 Using Page views feature
	 3.3.3.2 Using Popularity feature
	 3.3.3.3 Evaluation of two methods

	Second Experiment
	Dataset Correcting
	Dataset Cleaning
	Feature Selection
	Training Models
	Testing and evaluation
	improve dataset

	Conclusion

	General Conclusion
	References

