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`qfi˚u˚i`d`a‹n`c´e `o˝f `e¨l´d`eˇr¯s ¯sfi¯p`e´a˚t¨l›y ˚t‚h`oşfi`e ”w˝h`o ”wfleˇr`e ”vfleˇr‹y `c¨l´oşfi`e ˚t´o
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INTRODUCTION

Ordinary di�erential equations appear in many interdisciplinary areas and are the favored
language for the study of various natural phenomena that are employed extensively in natural
sciences, engineering, and technology. At present, ordinary di�erential equations are integrated
into any standard undergraduate science curriculum, while continuing to be the subject of intensive
research.

In general, most of the nonlinear di�erential equations cannot be solved by terms of elementary
functions. The qualitative or geometrical theory of di�erential equations is being used to analyze
di�erential equations whose explicit solutions are hard to �nd. These tools are originated by Henri
Poincaré in his work on di�erential equations at the end of the nineteenth century[1].

The main goal of this thesis is the global analysis of the behavior of solutions, under the point of
view of the qualitative or geometrical theory of nonlinear planar di�erential systems, especially those
depend on a parameter or several parameters then the problem is what’s happened if our di�erential
equation depends on a parameter and this parameter change?. In this work we address the question
of how the qualitative behavior of a di�erential equation change as we change the function of vector
�eld, here we are on the presence of bifurcation.

The qualitative theory o�ers two types of tools that permit the analysis of a di�erential equation.
On the one hand, there are tools of local character, some of these tools such as the Hartman-Grobman
Theorem, enable describing the singular points of the dynamical system; other techniques are used
to the analysis of the �ow in the neighborhood of singular points or periodic orbits. We should also
mention the Poincaré–Bendixson Theorem, which allows the analysis of theα andω-limit sets in
planar dynamical systems, i.e., the values to which the orbits of the dynamical system tend, as the
time approaches the extreme values in the interval of de�nition. Furthermore, the qualitative theory
contains tools of the global portraits, such as the study of the invariant algebraic curves which are
invariant by the �ow of the di�erential system, which the calculation of a su�cient number of them
enables the calculation of �rst integrals.
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Now, we describe the structure of this thesis which is divided into three chapters, in the �rst one
we present the necessary background information to perform our study as singular points and their
nature, Hartman-Grobman theorem, Poincaré map, phase portraits, structural stability (see[2]).

Chapter 2 begins with our examination concern the Hopf bifurcations and bifurcations of limit
cycles from a multiple focus and bifurcations at non-hyperbolic periodic orbit[7], we present theorems
of creation of limit cycles from a multiple focus, bifurcations in the neighborhood of a multiple focus
of multiplicity m = 1.

In chapter 3 we tackle the Hopf bifurcations and classi�es all phase portraits of a family of rigid
systems under the form

ẋ = −y + x(a+ bx2 + cy2), ẏ = x+ y(a+ bx2 + cy2),

whereb2 + c2 is not zero. Moreover, it distinguish between center and focus for these systems.
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CHAPTER I

INTRODUCTION TO BIFURCATION THEORY

In this chapter we adress the question of how the qualitative behavior of the ordinary di�erential
equation change as we change parameters. If the qualitative behavior remains the same for all nearby
vector �elds,

.
x= f(x). (I.1)

then the system(I.1) or the functionf said to be structurally stable, if a vector �eldf ∈ C1(E) is
not structurally stable, it belongs to the bifurcation set inC1(E).

Our aim is to give the basic results to study a what we called a bifurcation, �rstly we mention in
which case we have bifurcation after that we need to de�ne what’s we mean by structurally stable
or unstable and we end the chapter by a technique for studying the stability and bifurcation of the
periodic orbits. This is done by the so-called "Poincaré map".

I.1 Some concepts of di�erential equations

A good place to start analyzing the nonlinear system(I.1) is to determine the equilibrium points
of (I.1) and describe the behavior of this system near its equilibrium points.

De�nition I.1 (Equilibrium points). A pointx0 ∈ Rn is called an equilibrium point or critical point
of (I.1) if f(x0) = 0.

De�nition I.2. An equilibrium pointx0 of (I.1) is called a sink if all of the eigenvalues of the matrix
Df(x0) have a negative real part, it is called source if all of the eigenvalues ofDf(x0) have a positive
real part. And it is a saddle if there exists an eigenvalue positive, and there exists another one negative.

De�nition I.3 (Flow). Let E be an open subset ofRn andf ∈ C1(E). Forx0 ∈ E, letφt(x0) be
the solution of the initial value problem(I.1) with x0 on its maximal interval of existenceI(x0). Then

6



I.1. Some concepts of di�erential equations

the set
{t ∈ I(x0) : φt(x0) = φ(t, x0)},

is called the �ow of the di�erential equation(I.1). Which satis�es the following basic properties for all
x in R

n

• φ0(x) = x,

• φt(φs(x)) = φt+s(x) for all s, t ∈ R,

• φt(φ−t(x)) = φ−t(φt(x)) = x for all t ∈ R.

The same properties preserve for a linear system have the �owφt = eAt de�ned from Rn to Rn.

In general, the study of the local behavior of the �ow near an equilibrium pointx0 is quite
complicated. Already the linear systems show di�erent classes, even for local topological equivalence.
We say thatDf(x0) is the linear part of the vector �eldf atx0. There are many types of equilibrium
points of a di�erential equation(I.1) that classify from the eigenvalues ofDf(x0).

I.1.1 Hyperbolic and non-hyperbolic equilibrium points

Hyperbolic equilibrium points

De�nition I.4 (Hyperbolic equilibrium point). The equilibriumx0 is said to be hyperbolic if all
eigenvalues of the Jacobian matrixDf(x0) have non-zero real parts.

Hartman-Grobman theorem

The Hartman-Grobman theorem is one of the very important results in the qualitative theory of
ordinary di�erential equations. The theorem shows that near a hyperbolic equilibrium pointx0, the
nonlinear system(I.1) has the same qualitative structure as the linear system

.
x= Ax. (I.2)

with A = Df(x0), in what follow we shall assume that the equilibrium pointx0 has been translated
to the origin.

De�nition I.5 (Topologically equivalent). two autonomous systems of di�erential equations are said
to be topologically equivalent in a neighboorhood of the originNδ(0) or have the same qualitative
structure near the origin if there is a homeomorphismH mapping an openU containing the origin onto
an open setV containing the origin which map trajectories of the �rst system inU to the second one in
V and preserves their orientation by time. cf. Figure(I.1), for more details see[2].

7 Chapter I. Introduction to bifurcation theory



I.1. Some concepts of di�erential equations

Figure I.1:Topologically equivalent.

Theorem I.1. LetE be an open sub set ofRn containing the origin, letf ∈ C1(E), andφt be the
�ow of the nonlinear system(I.1). Suppose that the origin is an equilibrium point of(I.1) which
meanf(0) = 0 and that the matrixDf(0) has no eigenvalue with zero real part. Then there exists
H : U −→ V Homeomorphism such that for allx0 ∈ U , there is an open intervalI0 ⊂ R

containing zero such that for allx0 ∈ U andt ∈ I0

H ◦ φ(x0) = eAtH(x0);

i.e.,H maps trajectories of(I.1) near the origin onto trajectories of(I.2) near the origin and preserves
the parametrization by time.

The proof consists of �ve steps, see[2] and[9].

By the Hartman-Grobman theorem the nature and stability of any hyperbolic equilibrium point
x0 of the nonlinear system(I.1) is determine by the signs of the real parts of the eigenvaluesλj of
the matrixDf(x0). The stability of non-hyperbolic equilibrium points is typically more di�cult to
determine.

Non-hyperbolic equilibrium points

De�nition I.6 (Non-hyperbolic equilibrium point). If at least one eigenvalue of the Jacobian matrix
is zero or has a zero real part, then the equilibrium is said to be non-hyperbolic.

De�nition I.7 (Center). The origin is called a center for the nonlinear system(I.1) if there exists a
strictly positiveε such that every solution curve of(I.1) in the neighborhoodNε(0) containing the
origin in the interior, is a closed curve.

De�nition I.8 (Focus). The origin is called a focus for the nonlinear system(I.1) if there exists a

8 Chapter I. Introduction to bifurcation theory



I.1. Some concepts of di�erential equations

positiveε > 0 such that for0 < r0 < ε andθ0 ∈ R,

r(t, r0, θ0) → 0 and θ(t, r0, θ0) → ∞,

ast → ∞ for a stable focus, andt → −∞ for unstable focus.

De�nition I.9 (Center-focus). The origin is called a center-focus for(I.1) if there exists a decreases
sequence of closed solution curvesΓn; i.e.,Γn+1 in the interior ofΓn such thatΓn → 0 asn → ∞
and such that every trajectory betweenΓn andΓn+1 spirals towardΓn or Γn+1 ast → ±.

TheoremI.2. LetE be an open subset ofR2 containing the origin and letf ∈ C1(E) with f(0) = 0.
Suppose that the origin is a center for the linear system(I.2) with A = Df(0). Then the origin is
either a center, a center-focus or a focus for the nonlinear system(I.1).

A center-focus cannot occur in an analytic system. This is a consequence of Dulac’s theorem[2].
Liapunov’s method is one tool that can be used to distinguiche a center from a focus for a nonlinear
system. In our work, we interested in the second tool which is the so-called "Poincaré map".

I.1.2 Phase portraits

Although it is often impossible (or very di�cult) to determine explicitly the solutions of a di�er-
ential equation, it is still important to obtain information about these solutions, at least of qualitative
nature. To a considerable extent, this can be done describing the phase portrait of the di�erential
equation.

Letf : D → R
n be a continuous function in an open setD ⊂ Rn and consider the autonomous

equation(I.1). The setD is called the phase space of the equation.

De�nition I.10 (Orbits). If x(t) = Φt(x) is a solution of equation(I.1) with maximal intervalI,
then the setx(t) : t ∈ I ⊂ D is called an orbit of the equation(I.1).

De�nition I.11. The phase portrait of an autonomous ordinary di�erential equation is obtained by
representing the orbits in the setD, also indicating the direction of motion. It is common not to indicate
the directions of the axes, since these could be confused with the direction of motion.

I.1.3 Global phace portais

In order to study the behavior of trajectories of a planar di�erential system near in�nity, it is
possible to use a compacti�cation. One of the possible constructions relies on the stereographic
projection of the sphere onto the plane ( for more information see[6]). A better approach to studying
the behavior of trajectories "at in�nity" is to use the so-called Poincaré sphere. However, some of the
singular points at in�nity, on the Poincaré sphere my still be very complicated (see all the details for
instance in chapter 5 of[5] and[2]).

9 Chapter I. Introduction to bifurcation theory



I.1. Some concepts of di�erential equations

Local charts

Letχ = ϕ∂ \ ∂x+ ψ∂ \ ∂y be the planar polynomial vector �eld or in other words


.
x = ϕ(x, y),
.
y = ψ(x, y),

(I.3)

We recall thatn the degree of the system(I.3), is the maximum betweend1,d2 degrees ofϕ andψ.
The Poincaré sphere is de�ned asS2 = {y = (X, Y, Z) ∈ R3 : X2 + Y 2 + Z2 = 1} and its
tangent space at the pointY ∈ S2 is denoted byTY S2, which is tangent toR2 in T(0,0,1)S

2 = R
2.

We de�ne the central projectionf : T(0,0,1)S
2 −→ S

2 as follows: to each point(x, y) ∈
T(0,0,1)S

2 the central projection associates the two intersection pointsf+(x, y), f−(x, y) of
the straight line which connects the points(x, y) and(0, 0, 0) with the sphereS2. This central
projection gives two copies of(I.3) in S2, one in each hemisphere,H+ = {Z ∈ S2 : Z < 0} the
northen hemisphere andH− = {Z ∈ S2 : Z > 0} the southern hemisphere; cf. Figure(I.1.3).

f+(x, y) = (X, Y, Z) =
( x

∆(x, y)
,

y

∆(x, y)
,

1
∆(x, y)

)
,

f−(x, y) = (X ′, Y ′, Z ′) =
(

−
x

∆(x, y)
, −

y

∆(x, y)
, −

1
∆(x, y)

)
.

Where
∆(x, y) =

√
x2 + y2 + 1.

In this way, we obtain induced vector �elds in each hemisphere. Of course, all of them are analytically

10 Chapter I. Introduction to bifurcation theory



I.1. Some concepts of di�erential equations

conjugate toχ. the induced vector �eld onH+ isχ(f+(x, y)) = Df+(x, y)χ(x, y), and the
one inH− isχ(f−(x, y)) = Df−(x, y)χ(x, y). The equatorS1 = {Z ∈ S2 : Z = 0} can
be identi�ed with the in�nity of R2.

Remark I.1. We remark thatχ is a vector �eld onS2\S1 that is everywhere tangent toS2.

We extend the vector �eldχ from S2 \ S1 to S2, then the extended vector �eld onS2 is called the
Poincaré compacti�cation of the vector �eldχ onR2, and is denoted byP (χ) (see all the details for
instance in chapter 5 of[5]).

In summary, we have two symmetric copies ofχ on S2 \ S1, and studying the dynamics of
P (χ) nearS1, we have the dynamics ofχ at in�nity. The Poincaré disc, denoted byD2, is the
closed northern hemisphere of{Z ∈ S2 : Z ≥ 0} projected onZ = 0 under the projection
(X, Y, Z) 7→ (x, y). The in�nity S1 is invariant under the �ow of the Poincaré compacti�cation
P (χ).

Here two polynomial vector �eldsX andY associated to system(I.1) are topologically equivalent
if there is a homeomorphism onS2 preserving the in�nity S1 carrying orbits of the �ow ofP (X)
into orbits of the �ow of P (Y ), either reversing or preserving the sense of all orbits. For computing
the analytic expression ofP (χ) we use the fact thatS2 is a di�erentiable manifold. Thus we take
the six local chartsUi = {y = (y1, y2, y3) ∈ S2 : yi > 0}, andVi = {y = (y1, y2, y3) ∈ S2 :
yi < 0} for i = 1, 2, 3; and the associated di�eomorphismsFi : Ui −→ R

2 andGi : Vi −→ R
2

for i = 1, 2, 3 are respectively the inverses of the central projections from the planes tangent at the
points(1, 0, 0); (−1, 0, 0); (0, 1, 0); (0,−1, 0); (0, 0, 1) and(0, 0,−1). The value ofFi(y) or
Gi(y) for somei = 1, 2, 3 is denoted byz = (z1, z2), consequently according to the local charts
under consideration the same letterz represents di�erent coordinates.

After a rescaling in the independent variable in the local chart(U1, F1) the expression forP (χ) is

u̇ = vn
[
−uϕ

(
1
v
,
u

v

)
+ ψ

(
1
v
,
u

v

)]
, v̇ = −vn+1ϕ

(
1
v
,
u

v

)
;

in the local chart(U2, F2) the expression forP (χ) is

u̇ = vn
[
ϕ

(
u

v
,

1
v

)
− uψ

(
u

v
,

1
v

)]
v̇ = −vn+1ψ

(
u

v
,

1
v

)
;

and for the local chart(U3, F3) the expression forP (χ) is

u̇ = ϕ(u, v), v̇ = ψ(u, v).

In the chart(Vi, Gi) the expression forP (χ) is the same than in the chart(Ui, Fi) multiplied
by (−1)n+1 for i = 1, 2, 3. We note that the points at the in�nityS1 in any chart have coordinates
(u, v) = (u, 0).
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I.2. Structurally stable

The equilibrium points ofP (χ) which come from the equilibrium points ofχ are called �nite
equilibrium points ofχ, and the equilibrium points ofP (χ) which are inS1 are called in�nite
equilibrium points ofχ. We observe that the unique in�nite equilibrium points which cannot be
contained in the chartsU1 ∪ V1 are the origins of the local chartsU2 andV2. Therefore when we
study the in�nite equilibrium points on the chartsU2 ∪ V2, we only need to verify if the origin of
these charts is an equilibrium point.

I.2 Structurally stable

In this Section, we present the concept of structurally stable vector �eld or dynamical system and
give necessary and su�cient conditions for aC1-vector �eled f on a compact to be structurally
stable.

The idea of structural stability originated with Andronov and Pontrygin in 1937; cf.[7], p.56. We
say thatf is structurally stable vector �eld if for any vector �eldg nearf , the vectorsf andg
topologically equivalent, which means that those two vectors �elds are close to each other.

De�nition I.12 (TheC1-Norme). If f ∈ C1 whereE is an open subset ofRn, then theC1-Norme
of f which de�ned fromE intoE,

‖f‖1 = sup
x∈E

|f(x)| + sup
x∈E

‖Df(x)‖.

where|.| the euclidien norme, and‖.‖ the usual norme. So, we use theC1-Norme to measure the
distance between any two functions inC1, and ifE is a compact implie that‖f‖1 < +∞.

De�nition I.13 (Structurally stable). LetE be an open subset ofRn, we said that the vector �eld
f ∈ C1 is structurally Stable, if there existε > 0 such that for allg ∈ C1 with

‖f − g‖1 < ε,

f andg are topologically equivalent onE, which means that there exith fromE ontoE Homeo-
morphisme which map trajectories ofx′ = f(x), onto trajectories ofx′ = g(x) and preserve their
orientation by time, then we saidf structurally unstable if the vector �eldf is not structurally stable.

As we know, a periodic orbit or a cycle of a di�erential equation is any closed solution curve, that
can be stable or unstable. In the next section we are going to de�ne the Poincaré map which allow us
to study the stability and bifurcation of periodic orbits.
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I.3 The Poincaré map

Probably the most basic tool for studying the stability and bifurcation of the periodic orbits is the
Poincaré map. The idea of the Poincaré map whenΓ is a periodic orbit of the system(I.1) through
x0, with Σ is a hyperplane perpendicular toΓ atx0, then for any pointx ∈ Σ su�ciently near x0

the solution of(I.1) throughx at t = 0, Φt(x), will crossΣ again atP (x) nearx0 ; cf.Figure
(I.2), the mappingx → P (x) is called the Poincaré map. The Poincaré map can also be de�ned
whenΣ is a smooth surface.

P(x)

x

x0

Figure I.2:The Poincaré map.

Theorem I.3 (The existence and continuity of the Poincaré map and its �rst derivative). LetE be an
open subset ofRn and letf ∈ C1(E). Suppose thatΦt(x0) is a periodic solution of(I.1) of period
T and that the cycle

Γ = {x ∈ Rn | x = Φt(x0), 0 ≤ t ≤ T} ,

is contained inE. Let
∑

be the hyperplane orthogonal toΓ at x0; i.e., let

Σ = {x ∈ Rn | (x− x0) · f(x0) = 0} ,

then∃δ > 0 and∃! functionτ (x) de�ned and continuously di�erentiable forx ∈ Nδ(x0)
such that  τ (x0) = T

Φτ(x)(x) ∈ Σ
for all x ∈ Nδ(x0).

Proof. The proof of this theorem is an immediate application of the implicit function theorem, by
the supposition of

F (t, x) = (Φt(x) − x0) · f(x0), for a given x0 ∈ Γ ⊂ E.

for more details see[2].
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De�nition I.14 (The Poincaré map). Let Γ, Σ, δ, andτ (x) be de�ned as in theorem(I.3). Then,
for x ∈ Nδ(x0) ∩ Σ, the function

P (x) = Φτ(x),

is called the Poincaré map forΓ at x0.

Remark I.2. It follows from theorem(I.3) thatP ∈ C1(U) whereU = Nδ(x0) ∩ Σ.

• If fanalytic inE ⇒ P analytic inU ,

• Fixed points of the Poincaré map, i.e.,(pointsx ∈ Σ : P (x) = x) are periodic orbits of(I.1),

• By considering the system(I.1) with t → −t, we can show that the Poincaré mapP has a
C1-inverse,P−1(x) = Φ−τ(x)(x). Thus,P is a di�eomorphism; i.e., a smooth function with a
smooth inverse.

I.3.1 The Poincaré map of planar systems

Now, we are going to cite some speci�c results for the Poincaré map for planar systems. For
planar systems, if we translate the origin to the pointx0 ∈ Σ ∩ Γ. The point0 ∈ Γ ∩ Σ divideΣ
on two open segmentsΣ+ ∧ Σ− ; cf. Figure(I.3) below. Lets be the signed distance alongΣ with
s > 0 for points in Σ+ .

Figure I.3:The straight line normalΣ to Γ at 0

By theorem(I.3), the Poincaré mapP (s) de�ned for |s| < δ and we haveP (0). In order
to see how the stability of the cycleΓ is determined byP ′(0), let us introduce the displacement
function, which de�ned for all|s| < δ by

d(s) = P (s) − s. (I.4)

with P (0) = 0 andd′(s) = P ′(s) − 1. From the mean value theorem, for|s| < δ, ∃ σ ∈
[0, s] such that : d(s) = d′(σ)s. Sinced′(s) is continuous, the sign ofd′(s) will be the same
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asd′(0) for |s| su�ciently small as long asd′(0) , 0. Thus, ifd′(0) < 0 implie that d(s) <
0 for s > 0 andd(s) > 0 for s < 0 and thats < 0 in Σ−; i.e., the cycleΓ is a stable limit
cycle Cf. Figure(I.3). Similarly, if d′(0) > 0 then Γ is an unstable limit cycle. So, we have
the corresponding results that ifP (0) = 0 andP ′(0) < 1, then Γ is stable limit cycle and if
P (0) = 0 andP ′(0) > 1, thenΓ is an unstable limit cycle.

Theorem I.4. Let the di�erential equation(I.3) in the plane, and letφ(x, y, t) be the �ow of(I.3),
and∇ · f(x, y) be the divergence of the vector �eldf = (ϕ, ψ) at (x, y). Now, let us take
y∗ andL = {x, x1 ≤ x ≤ x2} with x1, x2 ∈ R, we chose these so that the horizontal line
Σ = L × {y∗} is transversal; i.e.,ψ(x, y∗) , 0 for x in L. Assume thatL′ ⊂ L is an open
subinterval such that for eachx ∈ L

′ , the solution of(I.3) starting from(x, y∗) returns toL× {y∗}
for someτ (x) > 0; i.e.,ψ(x, y∗) ∈ L× {y∗}, andP (x) be the �rst coordinate of the �rst return
map or the Poincaré map as indicated in(I.4). Then, for anyx ∈ L

′

P ′(x) =
ψ(x, y∗)

ψ(P (x), y∗)
· exp{

∫ τ(x)

0
∇ · f(φ(x, y∗, t)) dt}.

In particular ifP (x0) = x0, then

P ′(x) = exp{
∫ τ(x)

0
∇ · f(φ(x, y∗, t)) dt}.

Figure I.4:The straight line normalΣ = L× {y∗} to φ(t, x, y) at (x, y∗).

Proof. The derivative of the �owDφ is known to be a fundamental matrix solution of the �rst
variational equationφ(x, y, t), i.e.,

d

dt
Dφ(x, y, t) = Df(φ(x, y, t)) ·Dφ(x, y, t),

Sincedet Dφ(x, y, x0) = det(id) = 1 because ofφ(x, y, x0) = φ(x, y) = (x, y), the
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Abel-Liouville formula gives that

det Dφ(x, y∗, τ (x)) = exp{
∫ τ(x)

0
∇ · f(φ(x, y∗, t)) dt}.

To complete the proof it is necessary to relateP ′(x) with Dφ(x, y∗, τ (x)). Taking the partial
derivative of(P (x), y∗) = φ(x, y∗, τ (x)) gives

(P ′(x), 0) =
∂φ

∂t
(x, y∗, τ (x)) + τ ′(x) · f(φ(x, y∗, τ (x)).

Using the fact att = 0

d

dt
φ(·, t) ◦ φ(x, y∗, τ (x)) =

d

dt
φ(·, τ (x)) · φ(x, y∗, t),

it follows that f(P (x), y∗) = Dφ(x, y∗, τ (x)) · f(x, y∗). So,

ψ(P (x), y∗) · P ′(x) = det

 P ′(x) ϕ(P (x), y∗)
0 ψ(P (x), y∗)


= det

[
∂φ
∂t

(x, y∗, τ (x)) Dφ(x, y∗, τ (x)) · f(x, y∗)
]

+det
[
τ ′(x) · f(φ(x, y∗, τ (x))) f(φ(x, y∗, τ (x)))

]
= det

 Dφ(··)
 1

0

 Dφ(··)f(x, y∗)
 + 0

= det [Dφ(··)] · det


1

f(··)
0


=

(
exp

∫ τ(x)

0
∇ · f

[
φ(x, y∗, t)

])
· ψ(x, y∗).

Dividing byψ(P (x), y∗) gives the desired formula.

Now, we are going to cite the most useful formula of the Poincaré map for studying the stability
of limit cycles of the vector �eldf .

Corollary I.1. LetE be an open subset ofR2 and suppose thatf = (ϕ,ψ) ∈ C1(E), andγ(t) be
a periodic solution of(I.3) of periodT . then

P ′(0) = exp{
∫ T

0
∇ · f(γ(t))dt},

is the derivative of the Poincaré mapP (s) alongΣ.
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Corollary I.2. Under the hypotheses of corollary(I.1), the periodic solutionγ(t) is

• a stable limit cycle if
∫ T

0 ∇ · f(γ(t))dt < 0,

• an unstable limit cycle if
∫ T

0 ∇ · f(γ(t))dt > 0.

Remark I.3. It may be a stable, unstable, or semi-stable limit cycle or it may belong to a continuous
band of cycles if this quantity iszero.

I.3.2 A multiple limit cycle of multiplicity k

De�nition I.15 (A multiple limit cycle of multiplicity k). LetP (s) be The Poincaré map for a cycleΓ
of planar analytic system(I.1) and let

d(s) = P (s) − s,

be the displacement function. Then if

d(0) = d′(0) = · · · = d(k−1)(0) = 0 and dk(0) , 0,

Γ is called a multiple limit cycle of multiplicityk. If k = 1 thenΓ is called a simple limit cycle.

Remark I.4. It can be shown the stability of the limit cycleΓ from ”k”.

1. k even⇒ Γ is semi-stable limit cycle,

2. k odd⇒ Γ is stable limit cycle ifd(k)(0) < 0 and unstable limit cycle ifd(k)(0) > 0.

We shall see in the next chapter that ifΓ multiple limit cycle of multiplicityk, then”k” limit cycles
can be made to bifurcate fromΓ under a small periodic perturbation of the di�erential system(I.1).
Then it can be shown that in the analytic case,d(k)(0) = 0 for k = 0, 1, 2, . . . i� Γ belongs to a
continuous band of cycles.

I.3.3 The Poincaré map for a focus

In this part, we discuss The Poincaré map in the neighborhood of a focus, of course for planar
analytic systems, and to de�ne what we mean by a multiple focus.

Suppose that the planar analytic system(I.1) has a focus at the origin and thatDf(0) , 0.
Then(I.1) is linearly equivalent to the system

 ẋ = ax− by + p(x, y),
ẏ = bx+ ay + q(x, y),

(I.5)
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with b , 0, and the power series expansions ofp, q with second or higher degree terms. In polar
coordinates(I.5) equivalent to

 ṙ = ar + O(r2),
θ̇ = b+ O(r2),

(I.6)

Suppose thatr(t, r0, θ0) andθ(t, r0, θ0) are the solution of(I.6) satisfyingr(0, r0, θ0) = r0

andθ(0, r0, θ0) = θ0. Then forr0 > 0 su�ciently small and b > 0, θ is strictly increasing
function of t. Lett(θ, r0, θ0) be the inverse of this strictly increasing function and for a �xedθ0,
we de�ne the function

P (r0) = r(t(θ0 + 2π, r0, θ0), r0, θ0).

P (r0) is called the Poincaré map for the focus at the origin of(I.6); cf. Figure(I.5).

Figure I.5:The Poincaré map for a focus at the origin.

Lemma I.1. There existr > 0, such that for alls, 0 < |s| 6 r

d(s) · d(−s) < 0.

For the proof see([7]).

The following theorem gives us the stability and the multiplicity of a multiple focus .

Theorem I.5. LetP (s) be the Poincaré map for a focus at the origin of planar analytic system(I.5),
andd(s) = P (s) − s the displacement function then by lemma(I.1) and

d(0) = d′(0) = · · · = d(k−1)(0) = 0 and d(k)(0) , 0,

k is an odd number; i.e.,k = 2m+ 1 this fact provide in the next chapter. The integerm = (k −
1)/2 is called the multiplicity of the focus.
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• If m = 0 the focus is called a simple focus, then the sign ofd′(0) = a , 0 determine the
stability of the focus; i.e., ( stable ifa < 0 else unstable). But ifd′(0) = 0 which means
a = 0; i.e., ((I.5) has a multiple focus or center at the origin), and the �rst nonzero derivative
δ ≡ dk(0) , 0 is called the Laypunov number for the focus, and the stability of this focus
depends on the sign ofδ.

• If k = 3 then

δ3 = d′′′(0) = 3π
2b{[3(a30 + b03) + (a12 + b21)] − 1

b
[2(a20b20 − a02b02)

−a11(a02 + b20) + b11(a02 + b20)]},

where
p(x, y) =

∑
i+j≥2

aijx
iyj andq(x, y) =

∑
i+j≥2

bijx
iyj.

This information will be useful in the next chapter where we shall see thatm limit cycles can be
made to bifurcate from a multiple focus of multiplicitym under a suitable small perturbation of the
system(I.5). Now we are going to prove the Laypunov number fork = 3.

Proof. Suppose that the planar analytic system(1.5) has a focus at the origin and thatDf(0) , 0,

 x′ = ax− by + a02y
2 + a03y

3 + a11xy + a12xy
2 + a20x

2 + a21x
2y + a30x

3,

y′ = ay + bx+ b02y
2 + b03y

3 + b11xy + b12xy
2 + b20x

2 + b21x
2y + b30x

3,

with b , 0. In polar coordinates this system has the form



ṙ = ar + r2
(
(a02 + b11) sin2(θ) cos(θ) + a11 + b20) sin(θ) cos2(θ) + a20 cos3(θ)

+b02 sin3(θ)) + r3((a03 + b12) sin3(θ) cos(θ) + (a12 + b21) sin2(θ) cos2(θ)
+(a21 + b30) sin(θ) cos3(θ) + a30 cos4(θ) + b03 sin4(θ)).

θ̇ = r(−a02 sin3(θ) − (a11 − b02) sin2(θ) cos(θ) − (a20 − b11) sin(θ) cos2(θ)
+b20 cos3(θ)) + r2(−a03 sin4(θ) − (a12 − b03) sin3(θ) cos(θ) − (a21 − b12)×
sin2(θ) cos2(θ) − (a30 − b21) sin(θ) cos3(θ) + b30 cos4(θ)) + b.

then
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dr

dθ
= (ar + r2((a02 + b11) sin2(θ) cos(θ) + (a11 + b20) sin(θ) cos2(θ) + a20 cos3(θ)

+b02 sin3(θ)) + r3((a03 + b− 12) sin3(θ) cos(θ) + (a12 + b21) sin2(θ) cos2(θ)

+(a21 + b30) sin(θ) cos3(θ) + a30 cos4(θ) + b03 sin4(θ)))/(r(−a02 sin3(θ)

−(a11 − b02) sin2(θ) cos(θ) − (a20 − b11) sin(θ) cos2(θ) + b20 cos3(θ)]

+r2[−a03 sin4(θ) − (a12 − b03) sin3(θ) cos(θ) − (a21 − b12) sin2(θ) cos2(θ)

−(a30 − b21) sin(θ) cos3(θ) + b30 cos4(θ)) + b).

Now, by using the series of Taylor of the5th order with a = 0, thenF2(r, θ) the coe�cients of r2

which given by

F2(r, θ) =
[
(a02 + b11) sin2(θ) cos(θ) + a20 cos3(θ) + b02 sin3(θ) + (b20 + a11)

sin(θ) cos2(θ)
]
/b,

by integration ofF2(r, θ) between0 and2π all over2π we �nd 0, the next degree is3 andF3(r, θ)
is the coe�cients of r3. By integration, we obtainδ3.
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CHAPTER II

BIFURCATION THEORY

In this chapter, we consider two types of bifurcations, that can occur at a non-hyperbolic equilib-
rium point x0 of a di�erential system which depends on a parameterµ,

.
x= f(x, µ). (II.1)

with µ ∈ R, here for studying the stability we have two cases for the matrixDf(x0, µ0). The �rst
one is if it has a simple zero eigenvalue, in the second case we see if the saddle-node bifurcations
were generic.

II.1 Hopf bifurcations and bifurcations of limit cycles from

a multiple focus

In this section, we are interested in the one which has only a simple pair of purely imaginary
eigenvalues ( i.e., no other eigenvalues with zero real part ). Here the implicit function theorem
guarantees that in the neighborhood ofµ0 there will be a unique equilibrium pointxµ nearx0.

We illustrate the idea and present a general theory for planar systems. For the more general
theory of Hopf bifurcation in higher dimensional system see[3] or [4]. Let the planar analytic system


.
x = µx− y + p(x, y),
.
y = x+ µy + q(x, y),

(II.2)

where the analytic functionsp, q de�ned as in chapter(I).
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Changing over polar coordinates(r, θ) we �rst obtain the system


dr
dt

= F (r, θ) = µr + p(rcosθ, rsinθ)cosθ + q(rcosθ, rsinθ)sinθ,

dθ
dt

= 1 + Θ(r, θ) = 1 + q
r
cosθ − p

r
sinθ,

(II.3)

and then the equation
dr

dθ
= R(r, θ) =

F (r, θ)
1 + Θ(r, θ)

. (II.4)

De�nition II.1 (Hopf bifurcation). A Hopf bifurcation occurs, where a periodic orbit or limit cycle
is created as the stability of the equilibrium pointxµ changes, arises or goes away as a parameterµ

varies. When a stable limit cycle surrounds an unstable equilibrium point, the bifurcation is called a
supercritical Hopf bifurcation. If the limit cycle is unstable and surrounds a stable equilibrium point,
then the bifurcation is called a subcritical Hopf bifurcation.

LetF0 be a function of classk0 or analytical function in an open regionG of Rn, δ is some
positive number,r is a natural number such thatr ≤ k0.

De�nition II.2 (δ-Closeness to rankr). A functionF1 of classk1, r ≤ k1 or analytical in an open
regionG of Rn is said to beδ-close to rankr to the functionF0, if at any point of the region

|F1 − F0| < δ, |F (l)
1xα1

1 xα2
2 . . . xαn

n
− F

(l)
0xα1

1 xα2
2 . . . xαn

n
| < δ,

wherel = 1, 2, . . . , r, allαi are non-negative numbers andα1 + α2 + · · · + αn = l.

Remark II.1. It is clear that

• If two functions areδ-close to rankr in some regionG, they areδ-close to any rank; moreover,
for anyδ1, δ1 ≥ δ they areδ1-close to rankr in any subregion ofG.

• If we only have the one inequality everywhere in the regionG,

|F1 − F0| < δ,

i.e., only the functions as such areδ-close, but not their derivatives, the functionsF1 andF0 are
said to beδ-close to rank0.

De�nition II.3 (Focal value). The k-th focal value of the focusO is the value of the k-th derivative of
the displacement function(I.15) at the origin, i.e.,d(k)(0).

Lemma II.1. If there existsk such that

d
′(0) = d

′′(0) = · · · = d(k−1)(0) = 0, and d(k)(0) , 0. (II.5)
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and the origin is a focus, thenk is odd number.

Proof. Let suppose thatk the multiplicity of the focus is even number, by(II.3) and(II.4), r = 0
is a solution of equation(II.4). Therefore

d(0) = 0. (II.6)

By using the series of Taylor to the displacement functiond and using relations(II.5) and(II.6)
we �nd

d(s) =
d(k)(ηs)
k!

sk,

where0 < η < 1. Therefore, ifk is even,d(r) has the same sign for all su�ciently smallr both
negative and positive. contraduction with(I.1).

De�nition II.4. If the lemma(II.1) satis�ed, andk = 2m + 1, m > 0, we shall say that the
focusO is a focus of multiplicitym.

The next theorem shows that a dynamic system may only have a �nite number of di�erent
bifurcations in the neighborhood of a focus of a �nite multiplicitym.

TheoremII.1 (Theorem of creation of limit cycles from a multiple focus). If the originO is a multiple
focus of multiplicitym ≥ 1 of a dynamic system(A), of classN ≥ 2m+ 1 then

1. there existε0 > 0 andδ0 > 0 such that any system(Ã) δ0-close to rank2m + 1 to system
(A) has at mostm closed paths in the neighborhood of the originNε0(O);

2. for anyε < ε0 andδ < δ0 there exists a system(Ã) of classN to rank2m+ 1 to (A) and
hasm closed paths inNε0(O).

i.e., If the originO is a multiple focus of multiplicitym ≥ 1 of (A), systems(Ã) su�ciently close to
(A) to rank2m+ 1 can have at mostm closed paths in a su�ciently small neighborhood of the focus.
Thus it may createm, but no more thanm limit cycles.

For the details of the proof of this theorem, see[7].

Now lets consider one particular case, which is often encountered in applications, namely a system
dependent on a single parameter and its bifurcations in the neighborhood of a multiple focus of
multiplicity 1 when the parameter is varied. Let the planar analytic system


.
x = a(µ) x+ b(µ) y + ϕ(x, y, µ),
.
y = c(µ) x+ d(µ) y + ψ(x, y, µ),

(Aµ)
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Theorem II.2 (Bifurcations in the neighborhood of a multiple focus of multiplicitym = 1). For a
planar analytic system has a focus at the origin, ifδ3 , 0 de�ned as in the �rst chapter theorem(I.5)
then a Hopf bifurcation occurs at the origin of the planar analytic system(Aµ) at the bifurcation value
µ = 0;

1. if δ3 < 0, a unique stable limit cycle bifurcates from the origin of(Aµ) in this case, we have
what is called a supercritical Hopf bifurcation;

2. in the second case, ifδ3 > 0, the critical point generates an unstable limit cycle asµ passes
through the bifurcation valueµ = 0, we have what is called a subcritical Hopf bifurcation.

Proof. Let(Aµ) be a dynamic system which depends on the parameterµ, so we will consider the
bifurcations of this system associated with the variation of the parameterµ , in the neighborhood of
an equilibrium pointO(0, 0), whenO(0, 0) is a multiple focus of multiplicity1. For simplicity, we
assume thatµ = 0 is the bifurcation value. Let

σ(µ) = a(µ) + d(µ), (II.7)

∆(µ) =
∣∣∣∣∣∣ a(µ) b(µ)
c(µ) d(µ)

∣∣∣∣∣∣ . (II.8)

Then
σ(0) = 0, (II.9)

∆(µ) > 0. (II.10)

We apply the transformation

ξ = x, η = −
a(0)√
∆(0)

x−
b(0)√
∆(0)

, (II.11)

which reduces(A0) ((Aµ) with µ = 0) to the canonical form

dξ

dt
= −

√
∆(0)η+ ϕ (ξ, η),

dη

dt
=

√
∆(0)ξ+ ψ (ξ, η). (II.12)

Since(II.11) is non-singular transformation,O remains a multiple focus of multiplicity1 for
(II.12) also, and its stability does not change either, with the third derivative of the displacement
function does not vanish. We have seen in the �rst chapter that ifδ3 < 0, the origin is a stable focus,
and if δ3 > 0 it is an unstable focus.

LetV0 be a su�ciently small neighborhood of the pointO bounded by a cycle without contactC
of system(A0) which contains no closed paths or equilibrium point other thanO of this system,
and letσ0 > 0 be so small that any system(Aµ) for which has the following properties :
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1. the curveC is a cycle without contact for this system;

2. system(Aµ) has no equilibrium point, other thanO, in V0;

3. the pointO is a focus of(Aµ);

4. system(Aµ) has at most one closed path inV0.

Supposeσ(µ) that reverses its sign as the system passes through the bifurcation value of the
parameterµ = 0, i.e., the focusO changes its stability. This condition is clearly satis�ed if
σ′(0) , 0. Let us now consider the di�erent possible cases.
The case (i): If δ3 < 0 we assume that when we passing through the bifurcation valueµ = 0,
σ(µ) changes its sign from minus to plus. Ifσ′(µ) , 0 then this conditions are satis�ed whenµ
increases, forσ′(µ) > 0; whenµ decreases, forσ′(µ) < 0.
Sinceδ3 < 0, the focusO is a stable focus of(A0) for µ = 0. Therefore all the paths of(Aµ) enter
into the cycle without contactC ast increases. Forσ(µ) < 0, O is a stable focus of(Aµ)). By
theorem(II.1), (Aµ) has at most one limit cycle inV0, and if this cycle exists, it is a simple cycle,
i.e., either stable or unstable. Clearly, forσ(µ) < 0 no such cycle exists. Indeed, if this cycle existed,
it would be stable from outside and unstable from the inside, i.e., it could not be simple. We have
thus established that ifδ3 < 0 andσ(µ) < 0, (Aµ) has no limit cycles inV0.
Conversely, ifσ(µ) > 0,O is an unstable focus of(Aµ). Then, reasoning as before, we conclude
that there is a single limit cycleLµ of (Aµ) insideV0, and this is a simple stable cycle. It is ok seen
that if µ is su�ciently small, the cycleLµ is arbitrarily close toO.
We thus obtain the following results. Ifδ3 < 0 andσ′(0) > 0, system(Aµ) has no limit cycles in
V0 for small negativeµ andµ = 0, andO is the stable focus. As the system crosses the bifurcations
value (i.e., forµ > 0). The focus becomes unstable, and a stable limit cycle develops inside the
neighborhoodV0. If µ varied in the opposite direction, i.e., we move from positive to negativeµ,
the stable limit cycle which originally existed inV0 would contract to the focusO and vanish for
µ = 0, and the focus will change its stability accordingly.
As µ is further decreased, the focus remains stable and the topological structure ofV0 does not
change.
Forδ3 < 0 andσ′(0) < 0, the stable limit cycle is created on passing from positive to negativeµ,
and conversely it disappears whenµ increases and reaches zero.
The case (ii): Forδ3 > 0. The investigation proceeds along the same lines as before.

The above results can be summarized in the following table :
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µ < 0 µ = 0 µ > 0

δ3 < 0,σ′(0) > 0
Unstable focus,

no cycle
Stable focus,

no cycle
Unstable focus,

stable cycle

δ3 < 0,σ′(0) < 0
Unstable focus,

stable cycle
Stable focus,

no cycle
Stable focus,

no cycle

δ3 > 0,σ′(0) > 0
Stable focus,

unstable cycle
Unstable focus,

no cycle
Unstable focus,

no cycle

δ3 > 0,σ′(0) < 0
Unstable focus,

no cycle
Unstable focus,

no cycle
Stable focus,

unstable cycle

The above analysis shows that the change inµ brings about a change in the stability of the focus
if a limit cycle is created from the focus disappears contracting into the focus. A stable focus creates
a stable cycle, and an unstable focus, an unstable cycle. Thus a focus creates a limit cycle of the same
stability, and the stability of the focus changes in the process.
Conversely, when the cycle disappears (when it is absorbed by the focus), the focus acquires the
same stability as that of the cycle before absorption. This state of things is not limited to the case
of a focus of multiplicity1 : it is observed whenever a focus creates or absorbs a cycle of de�nite
stability(i.e., not semistable cycle).

Remark II.2. The same results are reserve for system(II.2), because of(II.2) is a special case of
(Aµ).

The next theorem proved the existance of the Hopf bifurcation in higher dimensional systems
where the Jacobian matrix has a pair of pure imaginary eigenvalues and no other eigenvalues with
zero real part; i.e.,λi = ±βi for all i, with β > 0.

Theorem II.3 (Hopf). Suppose that theC4-system(II.1) with x ∈ Rn,µ ∈ R which has(x0, µ0)
as a critical point, with simple pair of purely imaginary eigenvalues and no other eigenvalues with zero
real part. Then there is a smooth curve of equilibrium pointsx(µ) and the eigenvalue,λ(µ) andλ(µ)
ofDf(x(µ), µ) which are pure imaginary atµ = µ0. Furthermore, if

d

dt
[Reλ(µ)]µ=µ0

, 0,

then there is a unique two-dimensional center manifold passing through the point(x0, µ0) and a smooth
transformation of coordinates such that the system(II.1) on the center manifold is transformed into
the normal form


.
x = −y + ax(x2 + y2) − by(x2 + y2) + O(|x|4),
.
y = x+ bx(x2 + y2) + ay(x2 + y2) + O(|x|4),

(II.13)
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in a neighborhood of the origin fora , 0, has a weak focus of multiplicity one at the origin and


.
x = µx− y + ax(x2 + y2) − by(x2 + y2),
.
y = x+ µy + bx(x2 + y2) + ay(x2 + y2),

(II.14)

is a universal unfolding of this normal form in a neighborhood of the origin on the center manifold.

This theorem can be proved by a direct application of the center manifold (cf.[10]).

The following theorem shows that at mostm limit cycles can bifurcate from the origin which
is a weak focus or a multiple focus of multiplicitym > 1 as the parameterµ varies through the
bifurcations value and that there is an analytic perturbation of the vector �eld in(II.15), which
has exactly m limit cycles.


.
x = −y + p(x, y),
.
y = x+ q(x, y),

(II.15)

Theorem II.4 (The bifurcation of limit cycles from a multiple focus). If the origin is a multiple focus
of multiplicitym of the analytic system(II.15) then fork ≥ 2m+ 1

1. there is aδ > 0 and anε > 0 such that any systemε-close to(II.15) in theCk-norm has at
mostm limit cycles inNδ(0) and,

2. for anyδ > 0 andε > 0 there is an analytic system which isε-close to(II.15) in theCk-norm
has exactlym simple limit cycles inNδ(0).

For the proof you can see[7].
In this section, we considered a multiple focus and showed that it may create closed paths. In next

section we will elucidate the number of paths that may be created in the neighborhood of a multiple
limit cycle.

II.2 Bifurcations at non-hyperbolic periodic orbit

Many interesting types of bifurcations can take place at a non-hyperbolic periodic orbit. This is
the case when the derivative of the Poincaré map atx0 ∈ Γ, has an eigenvalue equal to one.

De�nition II.5 (Non-hyperbolic periodic orbit). A non-hyperbolic periodic orbit is a periodic orbit
have two or more characteristic exponents with zero real part.

The system(II.1) is said to have a non-hyperbolic periodic orbitΓ0 throughx0 at the bifurcation
valueµ0 if DP (x0, µ0) has an eigenvalue of unit modulus.
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De�nition II.6. A closed pathΓ0 of a dynamic system(A) of classN is said to be limit cycle of
multiplicity k if

d′(0) = d′′(0) = . . . = d(k−1)(0) = 0, and d(k)(0) , 0,

(k is a natural number,k ≤ N ).

The three simplest types of bifurcations that can occurs at a non-hyperbolic periodic orbit inR
2

are illustrated in the following theorem.

Theorem II.5. Suppose thatf ∈ C2(E × J) whereE is an open subset ofR2 andJ ⊂ R. Assume
that the system(II.1) has a periodic orbitΓ0 at the bifurcation valueµ = µ0 and its Poincaré map
is P (s, µ) de�ned in a neighborhoodNδ(0) of the origin which is a multiple limit cycle. Then if
P (0, µ0) = 0,DP (0, µ0) = 1 we have three cases;

• if D2P (0, µ0) , 0 and Pµ(0, µ0) , 0, a saddle-node bifurcation occurs at the non-hyperbolic
periodic orbitΓ0 at the bifurcation valueµ = µ0, the periodic orbitΓ0 is a multiple limit cycle
of multiplicity 2 and exactly two limit cycles.

• if Pµ(0, µ0) = 0,DPµ(0, µ0) , 0 andD2P (0, µ0) , 0, then a transcritical bifurcation
occurs at the non-hyperbolic periodic orbitΓ0 at the bifurcation valueµ = µ0,

• then if Pµ(0, µ0) = 0, DPµ(0, µ0) , 0, D2P (0, µ0) = 0 andD3P (0, µ0) = 0 a
pitchfork bifurcation occurs at the non-hyperbolic periodic orbitΓ0 at the bifurcation value
µ = µ0.

De�nition II.7. The rootO of the equation

g0(x) = 0, (II.16)

is called a root of multiplicityr of (II.16) if g0 is a function of classk > r and we have the following
condition are satis�ed

1. there existε0 > 0, σ0 > 0 such that any equationg(x) = 0 of classr which isσ0-close to
rankr to the functiong0(x) has at mostr roots for|x| < ε0,

2. for any positiveε < ε0 andσ there exists a functiong(x), σ-close to rankr to the function
g0(x) such that the equation(II.16) has preciselyr roots for|x| < ε.

A root x0 of a functiong0(x) is said to be of multiplicityr ≥ 1 if functions g(x) su�ciently
close tog0(x) cannot have more thanr roots in a su�ciently small neighborhood of the rootx0,
but there is any number of functions su�ciently close tog0(x) which have exactlyr roots in any
arbitrarily small neighborhood ofx0.
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Figure II.1: The values ofΓ0 correspond to the values of the parameters .

Lemma II.2. We called the numberx0 a root of multiplicityr of the functiong0(x) if and only if

g0(x0) = g′
0(x0) = g′′

0 (x0) = . . . = g
(r−1)
0 (x0) = 0, and g(r)

0 (x0) , 0.

For more detail see[7].

Theorem II.6 (Theorem of the creation of limit cycles from a multiple limit cycle). If (A) is a
dynamic system of classN > 1 or an analytical system, andΓ0 is a multiple limit cycle of multiplicity
k (2 ≤ k ≤ N ), then

1. there existε0 > 0 andδ0 > 0 such that any system(Ã) δ0-close to rankk to system(A) has
at mostk closed paths inNε0(Γ0);

2. for anyε < ε0 andδ < δ0 there exists a system(Ã) of classN (of analytical class, respectively)
which isδ0-close to rankk to (A) and hask closed paths inNε0(Γ0).

Proof. Lets prove the �rst proposition,let the displacement functiond de�ned for all s, |s| ≤ η∗,
whereη∗ some positive number. And letΓ0 be a limit cycle of multiplicityk of system(A), so

d
′(0) = d

′′(0) = · · · = d(k−1)(0) = 0, d(k)(0) , 0.

we see that0 is a root of multiplicity k of the displacement functiond, then by lemma(II.2) and
de�nition (II.7), there exist a positive numberε < η∗ andσ such that any functiond̃(s) de�ned
for all s, |s| ≤ ε, andσ-close tod(s) to rankk may have at mostk roots on the segment[−ε, ε]
(Figure(II.1)). By the second proposition of the de�nition(II.7), a su�ciently small positive
number is takenε0, andσ0 is taken also so small that the following condition is satis�ed: if system
(Ã) σ0-close to rankk toA the function d̃(s) is de�ned for (Ã) on the arcΣ for all s, |s| ≤ η∗,
and for |s| ≤ η∗ the function d̃(s) isσ0-close tod(s) to rankk.
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CHAPTER III

RIGID SYSTEM

All rigid planar systems are given by the di�erential equation of the form

 ẋ = −y + x q(x, y),
ẏ = x+ y q(x, y),

(III.1)

whereq : R2 → R is an analytic function. A di�erential planar system in which angular speed is
constant is called a rigid system. It is simple to see this system has the origin as the only equilibrium
point which is of center-focus type whenq(0, 0) = 0. There are the following open questions:

• How to decide the stability of the equilibrium point at the origin?

• How to know whether the system presents or not a center at the origin?

These questions are also related to the second part of Hilbert’s16th problem is still unsolved,
even in the quadratic case. The objective of this chapter is to classify the phase portraits of system

ẋ = −y + x(a+ bx2 + cy2), ẏ = x+ y(a+ bx2 + cy2), (III.2)

in the Poincaré disc. We assume thatb2 + c2 is not zero.

Theorem III.1. The phase portraits in the Poincaré disc of systems(III.2) with b2 + c2 , 0 are
topologically equivalent to one of the four phase portraits given in Figure(III.1).
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III.1. The local phase portraits of system (3.2)

Figure III.1:All topologically di�erent phase portraits in the Poincaré disc of systems (III.2).
.

III.1 The local phase portraits of system (3.2)

Study of systems (3.2) in the �nite region

Let us study the singular points and periodic orbits of systems(III.2)in the �nite region. For that,
the following lemma is needed.

Lemma III.1. For allθ ∈ [0, 2π] andλ > 0, the function

φ : θ → φ(θ) = −
∫ θ

0
e2as(b+ c+ (b− c) cos 2s)ds+ λ,

is strictly positive if one of the following conditions holds.

(i) b > c, c > 0 and(b+ 2a2b+ c)(1 − e4aπ)/2a(1 + a2) + λ > 0.

(ii) b > c andb < 0.

(iii) b < c, b > 0 and(b+ 2a2b+ c)(1 − e4aπ)/2a(1 + a2) + λ > 0.

(iv) b < c andc < 0.

(v) b = c , 0 and(b/a)(1 − e4aπ) + λ > 0.
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Proof.

The case (i):We assume thatb > c, c > 0 and

(b+ 2a2b+ c)(1 − e4aπ)/2a(1 + a2) + λ > 0.

Let the function

φ : θ → φ(θ) = −
∫ θ

0
e2as(b+ c+ (b− c) cos 2s)ds+ λ.

The derivative of this function with respect toθ is

dφ

dθ
= −(b− c)e2aθ(

b+ c

b− c
+ cos 2θ).

From the conditionsb > c andc > 0 it is easy to notice that(b+ c)/(b− c) > 1 which gives
(b+ c)/(b− c) + cos 2θ > 0 for all θ ∈ [0, 2π], thusφ is a strictly decreasing function for all
θ ∈ [0, 2π]. Sinceφ(0) = λ > 0, φ(2π) = (b+ 2a2b+ c)(1 − e4aπ)/2a(1 +a2) +λ > 0
andφ is a strictly decreasing function we obtain thatφ is strictly positive for allθ ∈ [0, 2π]. We
use the same argument to prove the case (iii).

The case (ii): We assume thatb > c andb < 0, this implies(b+ c)/(b− c) < −1 what means
(b+ c)/(b− c) + cos 2s < 0, we get

φ(θ) = (c− b)
∫ θ

0
e2as(

b+ c

b− c
+ cos 2s)ds+ λ > 0.

Thenφ is strictly positive. We use the same argument to prove the case (iv).

The case (v):Under the conditionb = c , 0 the functionφ becomes

φ(θ) = −
∫ θ

0
2be2asds+ λ.

The derivative of this function with respect toθ is

dφ

dθ
= −2be2aθ.

So,φ is strictly increasing or decreasing betweenφ(2π) = (b/a)(1 − e4aπ) + λ > 0 and
φ(0) = λ > 0. Thenφ is strictly positive.

The singular points of systems(III.2) in �nite are studied in the proposition below.

Proposition III.1. Polynomial di�erential systems(III.2) have only one �nite singular point which
is the origin of coordinates. Ifa > 0 this singular point is an unstable focus or a stable focus ifa < 0.
Whena = 0, the origin is a center ifb = −c and a focus ifb , −c.
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Proof. Since the eigenvalues of the linear part at the origin area± i, it follows that the origin is a
focus, which is unstable ifa > 0 and stable ifa < 0. In the case whena = 0, we use the Poincaré
map to distinguish between center and focus. The use of the polar coordinates systems(III.1)
become equivalent to the following Bernoulli equation

dr

dθ
= ar +

1
2

(b+ c+ (b− c) cos 2θ)r3.

By solving this last equation, we get

r(θ, r0) = e(−2aθ)
(

−
∫ θ

0
e2as(b+ c+ (b− c) cos 2s)ds+ r−2

0

)− 1
2

.

From Lemma(III.1) we see thatr(θ, r0) is well de�ned. For this, we can de�ne the Poincaré map
by

P : r0 → P (r0) = r(2π, r0),

wherer(2π, r0) = e(−4aπ)
(
−
∫ 2π

0 e2as(b+ c+ (b− c) cos 2s)ds+ r−2
0

)− 1
2 .

Fora = 0, we have

P (r0) = r(2π, r0) = (−2(b+ c)π + r−2
0 )− 1

2 .

If b = −c we obtainr(2π, r0) = r0 for all r0 ∈ R+, then the origin is center. Ifb , −c we get
r(2π, r0) , r0 for all r0 ∈ R+, hence the origin is a focus.

In the following Proposition, limit cycles of systems (III.2) are studied.

Proposition III.2. The polynomial di�erential systems(III.1) have a unique limit cycle if(a >
0, b < 0, c < 0) or (a < 0, b > 0, c > 0), and its expression in polar coordinates is

r(θ) = e(−2aθ)
(

−
∫ θ

0
e2as(b+ c+ (b− c) cos 2s)ds+ r−2

∗

)− 1
2

,

where

r∗ =
(

−(b+ 2a2b+ c)
2a(1 + a2)

)− 1
2

Proof. We have de�nedP in the proof of Proposition(III.1) by

P (r0) = r(2π, r0) = e(−4aπ)
(

−
∫ 2π

0
e2as(b+ c+ (b− c) cos 2s)ds+ r−2

0

)− 1
2
.

To get a periodic orbit we must verify the equalityr(2π, r0) = r0. So the unique positive value to
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verify this equation is

r∗ =
(

−(b+ 2a2b+ c)
2a(1 + a2)

)− 1
2

.

From Lemma(III.1) and the valuer∗ to be positive, we must take(a > 0, b < 0, c < 0) or
(a < 0, b > 0, c > 0). Then the proof of the proposition is completed.

The study of systems (3.2) in the in�nite region

Throughout this part, we will study the in�nite singular points in the Poincaré disc. Therefore,
we need to study all singular points in the chartU1 and verify whether the origin of the chartU2 is
a singular point. For that, we use the notations given in chapter 1 section(I.1.3), consequently,
then following proposition is deduced.

Proposition III.3. In the local chartU1, if cb > 0 the in�nity of systems(III.2) is �lled by singular
points, and ifcb < 0 the in�nity of systems(III.2) is �lled by singular points and when eliminating
the common factor we get two others singular points(±

√
−b/c, 0). If b > 0 the singular point

(
√

−b/c, 0) is saddle and(−
√

−b/c, 0) is weak focus. Ifb < 0 the singular point(
√

−b/c, 0) is
weak focus and(−

√
−b/c, 0) is saddle.

Proof. The systems (III.2) on the local chartU1 is

u̇ = v2 + u2v2, v̇ = −bv − cu2v − av3 + uv3. (III.3)

If bc > 0, the line{v = 0, ∀u ∈ R} verify the algebraic system

u̇ = 0, v̇ = 0,

thus the in�nity of systems(III.2)is a line of singularities. when we eliminate the common factorv
systems (III.2) on the local chartU1 becomes

u̇ = v + u2v, v̇ = −b− cu2 − av2 + uv2. (III.4)

If bc < 0 these systems have two singular points(
√

−b/c, 0) and(−
√

−b/c, 0) with eigen-

values±
√

2(b− c)
√

−b/c and ±
√

−2(b− c)
√

−b/c, respectively. In the caseb > 0 the

value−2(b − c)
√

−b/c is negative, then the point(
√

−b/c, 0) is saddle and the eigenvalues

of (−
√

−b/c, 0) are±i
√

2(b− c)
√

−b/c. To distinguish if the singular point(−
√

−b/c, 0)
is center or focus, we need to move this singular point at the origin by the change of variable
u = w −

√
−b/c, thus systems(III.4) become

ẇ = −2
√

−b
c
w + (

−b
c

+ 1)v + w2, v̇ = 2
√

−b
c
cw − (a+

√
−b
c

)v2 − cw2 + v2w.
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The eigenvalues of the origin are−
√

−b/c ± i

√
−2

√
−b/c(c− b+

√
−b/c)/c. Then, the

singular point(−
√

−b/c, 0) is focus. We use same argument to prove in the caseb < 0 that the
singular point(

√
−b/c, 0) is focus. The systems (III.2) on the chartU2 is

u̇ = −v2 − u2v2, v̇ = −bv − cu2v − av3 − uv3. (III.5)

The origin of the local chartU2 is one point of the line of singularitiesv = 0.

III.2 The global phase portraits of systems (3.2)

This section includes all information from subsection(III.1) to prove the global phase portraits
of systems(III.2).

III.2.1 The case:a = 0

In this case, the eigenvalues of the origin in �nite are purely imaginary. We use the Proposition
(III.1) to distinguish if the origin is a center or a focus. And with the help of Proposition(III.3),
we prove all di�erent cases in in�nite.

The case: (a = 0, b = −c)

From Proposition(III.1) the origin in �nite is a center and there is no limit cycle. And from
Proposition(III.3) in in�nite there is a line of singularities and two singular points(

√
−b/c, 0)

and (−
√

−b/c, 0) in the chartU1; saddle and focus respectively ifb > 0, focus and saddle
respectively ifb < 0. Then there is a unique possible global phase portrait in the Poincaré disc given
in Figure(III.2).

The case: (a = 0, bc > 0)

From Proposition(III.1), the origin in �nite is a focus; additionally, there is no limit cycle. Also,
from Proposition(III.3) in in�nite there is a line of singularities; along with a unique possible
global phase portrait in the Poincaré disc given in Figure(III.3).

The case: (a = 0, b , −c, bc < 0)

From Proposition(III.1), the origin in �nite is a focus and there is no limit cycle. Further-
more, from Proposition(III.3) in in�nite there is a line of singularities and two singular points
(
√

−b/c, 0) and(−
√

−b/c, 0) in the chartU1; saddle and focus respectively ifb > 0, focus and
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Figure III.2: The global phase portrait of systems(III.2)for a = 0 andb = � c, has eleven separatrices (S=11)
and three canonical regions (R=3). The phase portrait can be obtained by takinga = 0 , b = 1 , c = � 1.

Figure III.3: The global phase portrait of systems(III.2)for a = 0 , b , � c andbc > 0, has tow separatrices
(S=2) and one canonical region (R=1). The phase portrait can be obtained by takinga = 0 , b = 1 , c = 1 .
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