

DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION

AND SCIENTIFIC RESEARCH

UNIVERSITY OF BORDJ BOU ARRERIDJ

FACULTY OF MATHEMATICS AND INFORMATICS

DEPARTEMENT OF INFORMATICS

THESIS

DISSERTATION SUBMITTED TO THE INFORMATICS DEPARTMENT IN

CANDIDACY FOR MASTER DEGREE

SECTION: NETWORKS AND MULTIMEDIA

THEME

Vector Space Models Application for text comparison.

Submitted By:

 Bouhafs Aimen

Board of Examiners:

 President: Mrs. Bensefia Hassina Univ Of BBA

 Examiner: Mrs. Chellakh Hafida Univ Of BBA

 Supervisor: Mrs. Belalta Ramla Univ Of BBA

Academic Year: 2019/2020

DEDICATION

Wholeheartedly I am thankful and I am in indebted to my parents.

The source of love, encouragement and all the strength I needed and still in need!

To my Brothers, Sisters and all my family.

To all my friends and colleagues.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful

 All praises to Allah for the strengths and His blessing, who helped me and

gave me patience and courage during this year and completing this thesis.

 I would first like to warmly thank Mrs. Belalta Ramla who allowed me to

benefit from her guidance. The advices she gave me, the patience and the

confidence she showed in me were decisive in carrying out this research work.

 My sincere thanks also go to the members of the jury, Mrs. Benseffia Hassina

and Mrs. Chellakh Hafida for their interest in this research by agreeing to

examine my modest work and enrich it with their proposals.

 I also want to thank all of my teachers during the school years.

TABLE OF CONTENETS

Dedication II

ACKNOWLEDGEMENTS III

Table of contenets IV

List of figures VII

List of Equations IX

Chapter 1. General Introduction 2

1.1 Context: 2

1.2 Problematic: 3

1.3 Objectives: 3

1.4 Thesis plan: 3

Chapter 2. State of Art 6

2.1 Introduction: 6

2.2 Text similarity methods: 6

2.2.1 Corpus-based Similarity: 6

2.2.2 Knowledge-Based Similarity: 7

2.2.3 String-based Similarity: 8

2.2.3.1 Character-based Similarity: 9

2.2.3.2 The term-based similarity: 9

2.2.4 Hybrid Similarities: 10

2.3 Token-based models’ objectives: 10

2.4 Conclusion: 11

Chapter 3. Architecture and Conception 13

3.1 Introduction: 13

3.2 Vector Space Model: 13

3.2.1 Definitions: 13

3.2.2 Models and approaches: 13

3.2.2.1 Inner Product: 14

3.2.2.2 Cosine Similarity: 15

3.2.2.3 Jaccard Similarity: 15

3.2.2.4 Dice Similarity: 16

3.2.3 Term Weighting: 16

3.2.3.1 TF-IDF weighting: 17

3.2.3.2 Term Frequency (TF): 17

3.2.3.3 Document frequency (DF): 17

3.2.3.4 Inverse Document Frequency (IDF): 18

3.2.3.5 Term frequency–Inverse document frequency(tf.idf): 18

3.3 Conception: 18

3.3.1 Tokenization: 19

3.3.2 Punctuation Removal: 19

3.3.3 Stop-word removal: 20

3.3.4 Lemmatization: 21

3.3.5 Creating words-bag: 22

3.3.6 Compute the term frequency: 22

3.4 Applying the vector space model Techniques: 23

3.5 Conclusion: 25

Chapter 4. Implementation 27

4.1 Introduction: 27

4.2 Programming Language: 27

4.2.1 Python Presentation: 27

4.2.2 Interactive Python: 28

4.3 Environment and tools: 28

4.3.1 Presentation of PyCharm: 28

4.3.2 PyQt presentation: 29

4.3.3 PyQt designer: 30

4.4 Application Presentation: 31

4.4.1 Main window: 32

4.4.2 English window: 32

4.4.3 French window: 36

4.5 Result discussion: 38

4.6 Conclusion: 39

General Conclusion 40

References 41

LIST OF FIGURES

Figure 2. 1 Four major groups of text similarity methods and algorithms 6

Figure 2. 2 Corpus-Based Similarity Measures 7

Figure 2. 3 Knowledge-Based Similarity Measures 8

Figure 2. 4 String-Based Similarity Measures 10

Figure 3. 1 representation of inner product 14

Figure 3. 2 Text samples used for conceptions 19

Figure 3. 3 Tokenization of first document 19

Figure 3. 4 Tokenization of second document 19

Figure 3. 5 Punctuation removal from d1 20

Figure 3. 6 Punctuation removal from d2 20

Figure 3. 7 Stop word removing from d1 20

Figure 3. 8 Stop word removing from d2 20

Figure 3. 9 Lemmatization of d1 21

Figure 3. 10 lemmatization of d2 21

Figure 3. 11 Creation of words-bag from d1 and d2 22

Figure 3. 12 Term weights of d1 22

Figure 3. 13 Term weights of d2 22

Figure 3. 14 the inverse document frequency weights 23

Figure 3. 15 TF-IDF weights of d1 23

Figure 3. 16 TF-IDF weights of d2 23

Figure 4. 1 Executing Python from CMD 28

Figure 4. 2 PyCharm interface 29

Figure 4. 3 PyQt designer 30

Figure 4. 4 Generating python code from .ui 31

Figure 4. 5 Python code generated from interface design 31

Figure 4. 6 Main Window of application 32

Figure 4. 7 Texts tab from English Window of application 32

Figure 4. 8 Error message from English window 33

Figure 4. 9 Error message from English window 34

Figure 4. 10 Documents tab from English window 35

Figure 4. 11 Dialog window to choose documents 35

Figure 4. 12 Error message from Documents tab 36

Figure 4. 13 Texts tab from French window 37

Figure 4. 14 Documents tab from French window 38

Figure 4. 15 English similarity window 38

Figure 4. 16 French similarity window 38

LIST OF EQUATIONS

Equation 3. 1: Geometric Inner product 14

Equation 3. 2: Inner Product 14

Equation 3. 3: Cosine Similarity 15

Equation 3. 4 : Jaccard Similarity for sets 15

Equation 3. 5: Jaccard Similarity for vectors 16

Equation 3. 6: Dice Similarity for sets 16

Equation 3. 7: Dice Similarity for vectors 16

Equation 3. 8: Term Frequency 17

Equation 3. 9: Inverse Document Frequency 18

Equation 3. 10: TF.IDF 18

Equation 3. 11: Vectors Length 24

Chapter 01

General Introduction

Chapter 1 General

Introduction

2

CHAPTER 1. GENERAL INTRODUCTION

1.1 Context:

 Similarity has been a subject of great interest in human history since a long time ago.

Even before computers were made, humans have been interested in finding similarity in

everything. Each and every field of study provides their own definition of what similarity is.

In Psychology similarity “…refers to the psychological nearness or proximity of two mental

representations.” while in music it’s “…a certain similarity between two or more musical

fragments “and in geometry “Two geometrical objects are called similar if they both have the

same shape.”

 Similarity is a broad and abstract topic. Every time Similarity is mentioned, the

question pops up: “What kind of Similarity?” The topic is quite big in the Information

Retrieval field and lately it has become quite the hype again. People are making search

engines, plagiarism programs, optimizing search algorithms, finding out how to specify the

searches better and faster, and where to focus whether it be images, sound or strings.

 Definitions for similarity are different for every field but what keeps going in each of

them is the use of one big field to prove the similarity: Math.

 Math is used to calculate similarity where it dominates the field. After the start of two

new fields in last century, Information Theory and Computer Science, the topic of similarity

has not become smaller at all. Instead by using the computer it has been easier to find out how

similar two or more things are to each other.

 Textual similarity which is a subcategory of Information Retrieval is quite close to its

brother the search engine since both takes a query and find forth the similar texts for the

query. Where it is expected from search engines to find the respective query’s document of

relevance and rank them, it is expected from the text similarity to find out how similar the

query is to the documents. Both overlap a lot but are still a bit different. Even when there is no

shortage of textual materials on a particular topic, procedures for indexing or extracting the

knowledge or conceptual information contained in them can be lacking. Recently developed

information retrieval systems (IRS) are based on the concept of a vector space Models.

Chapter 1 General

Introduction

3

1.2 Problematic:

 The world witnesses a huge informational revolution that brings out lots of information

and researches. Researching for this information without using search engines is a hard task or

it is impossible to gain accurate information without them. Besides, the importance of

information retrieval (IR) sciences has evolved. This science depended only on libraries in the

past, but with the widespread and the evolution of digital libraries and the Internet has

dramatically transformed the processing, storage, compare and retrieval of information. But

this transformation brings a lot of problems, some of them are retrieving information becomes

more difficult, also, one of the biggest problems is the plagiarism that becomes more and

more withing the growth of information in the digital areas, and its detection becomes harder.

 Detection of plagiarism can be undertaken in a variety of ways. Human detection is the

most traditional form of identifying plagiarism from written work. This can be a lengthy and

time-consuming task for the reader and can also result in inconsistencies in how plagiarism is

identified within an organization. So, how can we make the detect the plagiarism without any

human interaction easier? and how we can make information retrieving and classification

more accurate and efficacy?

1.3 Objectives:

 Nowadays, measuring the similarity of documents plays an important role in text related

researches and applications such as document clustering, plagiarism detection, information

retrieval, machine translation and automatic essay scoring.

 Our objective is to develop and evaluate the performance of a text comparison system

based on Vector Space Models which indicate the similarity between texts or documents.

1.4 Thesis plan:

 In addition to this introductive chapter, our work will be divided into three chapters, 2
nd

chapter includes a state of art that defines and explains some of the measuring similarity

models and give a little brief about the model we choose to study.

Chapter 1 General

Introduction

4

 In the 3
rd

 chapter, we will look deep in the vector space model we already choose, we

will see its definitions, main techniques and approaches, then we will create our own model

and explains the steps of creation in the meanwhile.

 In the last chapter, we will implement our model using Python as programming language

and PyCharm as an IDE, then we will see the interfaces and windows of our application and

its results.

Chapter 02

State of Art

Chapter 2 State of

art

6

CHAPTER 2. STATE OF ART

2.1 Introduction:

 Measuring similarity between documents is fundamental to most forms of document

analysis. Some of the applications that use document similarity measures include:

Information retrieval, text classification, document clustering, topic modeling, topic tracking,

matrix decomposition. In the next section, we will see some of the main methods and

algorithms that are used in similarity measuring.

2.2 Text similarity methods:

 Different approaches have been promoted to measure the similarity between one text

with another. The method is divided into four major groups, String-based, Corpus-based,

Knowledge-based, and Hybrid text similarities; as shown in Fig. 1. These approaches will be

discussed in the following subsections.

Figure 2. 1 Four major groups of text similarity methods and algorithms

2.2.1 Corpus-based Similarity:

 Corpus-based similarity uses a semantic approach. This similarity approach determines

the similarity between two concepts based on the information extracted from a large

corpora. A corpus (plural corpora) is a large collection of electronic written or spoken text.

Text similarity

measures

Corpus-Based Knowledge-Based String-Based Hybride-Based

Chapter 2 State of

art

7

Corpus contains a predefined set of sentences and their translation to other language. The

aim is to match input text with the text in the corpus and achieve translation [1]. Many

corpus-based similarity or relatedness measures are based on concept-based resources,

such as Wikipedia.

 Some of corpus-based similarity measures are Hyperspace Analogue to Language (HAL),

Latent Semantic Analysis (LSA), Explicit Semantic Analysis (ESA), Pointwise Mutual

Information (PMI), Normalized Google Distance (NGD), and Extracting Distributional Similar

words using Co-occurrence (DISCO). [2]

 Figure 2. 2 Corpus-Based Similarity Measures[5]

2.2.2 Knowledge-Based Similarity:

 Knowledge-Based Similarity is one of semantic similarity measures that bases on

identifying the degree of similarity between words using information derived from semantic

networks [3]. WordNet [4]is the most popular semantic network in the area of measuring

the Knowledge-Based similarity between words; WordNet is a large lexical database of

Chapter 2 State of

art

8

English. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms

(synsets), each expressing a distinct concept. Synsets are interlinked by means of

conceptual-semantic and lexical relations .As shown in figure 3, Knowledge-based similarity

measures can be divided roughly into two groups: measures of semantic similarity and

measures of semantic relatedness.[5]

 There are six measures of semantic similarity; three of them are based on information

content: Resnik (res), Lin (lin) and Jiang & Conrath (jcn). The other three measures are based

on path length: Leacock & Chodorow (lch), Wu & Palmer (wup) and Path Length (path).

Furthermore, there are three measures of semantic relatedness: St.Onge (hso) , Lesk (lesk)

and vector pairs (vector). [5]

Figure 2. 3 Knowledge-Based Similarity Measures [5]

2.2.3 String-based Similarity:

 String-based similarity is the oldest, simplest yet most popular measurement

approach. This measure operates on string sequences and character composition. Two main

types of string similarity functions are character-based similarity functions, and token-based

similarity functions.

Chapter 2 State of

art

9

2.2.3.1 Character-based Similarity:

 Is also called sequence-based or edit distance (ED) measurement. It takes two strings

of characters and then calculates the edit distance (including insertion, deletion and

substitution) between them. Character-based quantifies character similarity between two

strings to quantify the similarity, for instance ED which is the minimum number of single-

character edit operations needed to transform one to another [6]. In another word, two

strings are similar if the edit distance minimum operation number is smaller than the given

threshold. Some examples of this approach are Hamming distance, Levenshtein distance.

Damerau-Levenshtein, Needleman-Wunsch, Longest Common Subsequence. Smith-

Waterman, Jaro, JaroWinkler, and N-gram.[5]

2.2.3.2 The term-based similarity:

 Also known as token-based because it models each string as a set of tokens. The

similarity between strings can be assessed by manipulating sets of tokens, such as words.

The main idea behind this approach is to perform two string similarity measurement based

on general tokens, correspond to its token sets. [7] If the similarity is denoted, the string pair

is flagged as being similar or duplicate. Term-based similarity address drawback on

character-based when it works on larger string. [8]

 The main characteristic of token-based similarity is the use of the overlap of two

token sets as likeness quantification. The overlap is computed based on exactly matched

token pairs without considering other similar tokens. Token-based similarity approach is

useful for recognizing the term rearrangement by breaking the strings into substrings. Vector

space models (Jaccard similarity, Dice’s coefficient, Cosine similarity) are some examples of

these methods. And it will be the core subject that we will treat in the next chapter.

Chapter 2 State of

art

10

 Figure 2. 4 String-Based Similarity Measures [5]

2.2.4 Hybrid Similarities:

 In addition to the three categories previously described, there are still several

similarity measures that cannot be categorized into any prior family. The idea of this

approach is to combine the previously described approaches, including string-based,

corpus-based, and knowledge-based similarity to reach a better metric by adopt their

advantages.[5]

2.3 Token-based models’ objectives:

 Token-based similarities are very widely used in different areas. Probably, it is the most

well-known approach to work with texts, that’s because of its:

• Simplicity, since it is based on a linear algebra model.

Chapter 2 State of

art

11

• Ability to incorporate term weights any kind of term weight can be added.

• Can measure similarity between almost everything; query and document, document and

document, query and query, sentence and sentences and so on.

• Partial matching is allowed.

• Ranking of documents compared to their relevance is allowed.

2.4 Conclusion:

 In this chapter, we saw some of the main methods used in textual similarity measuring,

and we introduce them and their algorithms, then we have seen the String-Based similarity

method and its algorithms that called vector space models which would be our subject in the

next chapters.

Chapter 03

Architecture and conception

Chapter 3 Architecture and

Conception

13

CHAPTER 3. ARCHITECTURE AND CONCEPTION

3.1 Introduction:

In this chapter we will define the VSM (Vector Space Model), then we will explain the four

main techniques of vector space model. After that we try to concept the model and apply

those four techniques.

3.2 Vector Space Model:

3.2.1 Definitions:

Definition1: The Vector space model is a model where the document and the query both are

represented in vector, each vector constructed of weight in a multidimensional space, whose

dimensions are the terms used to build an index that represents documents

Definition2: A content-based model that represents a document as a vector in an n-

dimensional space, where each dimension represents a term and similarity between two

documents is measured through cosine angle between the two vectors [9]

Definition3: One of classical representations of document content. The documents are points

(or vectors rooted in coordinate origin) in this high-dimensional space (spanned by terms

being coordinate axes), with the point (vector) coordinates reflecting frequencies of different

terms (linearly or in a more complex manner) in a given document [10]

Definition4: Is an algebraic model for representing documents (not only text) as vectors of

identifiers, such as, for example, index terms. It is used in information filtering, information

retrieval, indexing and relevancy rankings. Its first use was in the SMART Information

Retrieval System [11]

3.2.2 Models and approaches:

As we said before, there is four main techniques in VSM, which are:

 Inner product

 Cosine similarity

Chapter 3 Architecture and

Conception

14

 Jaccard index

 Dice index

3.2.2.1 Inner Product:

 Inner product is the first technique in the vector space model. This technique considered

as a base for other techniques. All the other techniques depend on the results of this technique

to compute the results of their functions.

 An inner product is a generalization of the dot product. In a vector space, it is a way to

multiply vectors together, with the result of this

multiplication being a scalar.

Figure 3. 1 representation of inner product

 There are several different ways of representing/calculating the inner product. Equation

(1) gives you the geometric meaning of inner product. Equation (2) would not shows you any

idea of visualization, but it gives you a way of calculating the inner product with very simple

multiplication and sums (Equation (2) would be the most common ways to calculate the inner

product in most of the application)

𝑈 ∙ 𝑉 = |𝑈||𝑉|cos𝜃

Equation 3. 1: Geometric Inner product

𝑢 ∙ 𝑣 = 𝑥1 × 𝑥2 + 𝑦1 × 𝑦2

Equation 3. 2: Inner Product

 The idea here is to implement our documents or texts as vectors and to find the similarity

between these documents.

Chapter 3 Architecture and

Conception

15

3.2.2.2 Cosine Similarity:

Cosine similarity measures the similarity between two vectors of an inner product space. It is

measured by the cosine of the angle between two vectors and determines whether two vectors

are pointing in roughly the same direction. It is often used to measure document similarity in

text analysis. [12]

Let 𝑢 and 𝑣 be two vectors for comparison. Using the cosine measure as a similarity

function, we have

𝑠𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒(𝑢, 𝑣) = 𝑐𝑜𝑠𝜃 =
𝑢 ∙ 𝑣

‖𝑢‖‖𝑣‖
=

𝑥1 × 𝑥2 + 𝑦1 × 𝑦2

√𝑥1
2 + 𝑦1

2 × √𝑥2
2 + 𝑦2

2

Equation 3. 3: Cosine Similarity

 The measure computes the cosine of the angle between vectors u and v. A cosine value of

0 means that the two vectors are at 90 degrees to each other (orthogonal) and have no match,

which means the documents we are comparing are quietly different. The closer the cosine

value to 1, the smaller the angle and the greater the match between documents.

3.2.2.3 Jaccard Similarity:

” Also known as Jaccard index, the Jaccard similarity coefficient is a statistical measure

of similarity between sample sets” [13]

 The Jaccard index or Jaccard coefficient [14] is the ratio between the cardinality (the size)

of the intersection of the sets considered and the cardinality of the union of the sets. It allows

to evaluate the similarity between the sets. The documents d1 and d2 are therefore represented

as sets of terms. The similarity obtained 𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑 ∈ [0,1]

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑(𝑑1, 𝑑2) =
‖𝑑1 ∩ 𝑑2‖

‖𝑑1 ∪ 𝑑2‖

Equation 3. 4 : Jaccard Similarity for sets

It is also possible to use vector weighted representation:

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑 =
𝑢 ∙ 𝑣

𝑢2 + 𝑣2 − 𝑢 ∙ 𝑣

Chapter 3 Architecture and

Conception

16

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑 =
𝑥1 × 𝑥2 + 𝑦1 × 𝑦2

(𝑥1 + 𝑦1)2 + (𝑥2 + 𝑦2)2 − 𝑥1 × 𝑥2 + 𝑦1 × 𝑦2

Equation 3. 5: Jaccard Similarity for vectors

3.2.2.4 Dice Similarity:

 The D index measures the similarity between two documents d1 and d2 based on the

number of terms common between d1 and d2. Dice measurement is used like Jaccard to find

the similarity between two vectors but gives twice the weight to agreements, the dice

similarity measure [15] obtained by the formula:

𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑑1, 𝑑2) =
2𝑁𝑐

𝑁1 + 𝑁2

Equation 3. 6: Dice Similarity for sets

Where NC is the number of common words between d1 and d2, and N1(resp. N2) is the

number of terms in d1(resp. d2)

While the vector weighted calculation can be done with the formula:

𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑑1, 𝑑2) = 2
 𝑢 ∙ 𝑣

𝑢2 + 𝑣2

𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑢, 𝑣) = 2
𝑥1 × 𝑥2 + 𝑦1 × 𝑦2

(𝑥1 + 𝑦1)2 + (𝑥2 + 𝑦2)2

Equation 3. 7: Dice Similarity for vectors

3.2.3 Term Weighting:

 Term weighting is a procedure that takes place during the text indexing process in order to

assess the value of each term to the document. Term weighting is the assignment of numerical

values to terms that represent their importance in a document in order to improve retrieval

effectiveness [16]

 Essentially it considers the relative importance of individual words in an information

retrieval system, which can improve system effectiveness, since not all the terms in a given

document collection are of equal importance. Weighing the terms is the means that enables

the retrieval system to determine the importance of a given term in a certain document or a

Chapter 3 Architecture and

Conception

17

query. It is a crucial component of any information retrieval system, a component that has

shown great potential for improving the retrieval effectiveness of an information retrieval

system [17]. One of the most important term weighting method is TF-IDF.

3.2.3.1 TF-IDF weighting:

 tf–idf or TFIDF, short for term frequency–inverse document frequency, is a numerical

statistic that is intended to reflect how important a word is to a document in a collection or

corpus.

 Typically, the tf-idf weight is composed by two terms: the first computes the normalized

Term Frequency (TF), aka. the number of times a word appears in a document, divided by the

total number of words in that document; the second term is the Inverse Document Frequency

(IDF), computed as the logarithm of the number of the documents in the corpus divided by the

number of documents where the specific term appears

3.2.3.2 Term Frequency (TF):

which measures how frequently a term occurs in a document. Since every document is

different in length, it is possible that a term would appear much more times in long documents

than shorter ones. Thus, the term frequency is often divided by the document length (aka. the

total number of terms in the document) as a way of normalization:

𝑇𝐹(𝑡, 𝑑) =
𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡 𝑖𝑛 𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑑

Equation 3. 8: Term Frequency

Where t: term, d: document

3.2.3.3 Document frequency (DF):

 This measures the importance of document in whole set of corpora, this is very similar to

TF. The only difference is that TF is frequency counter for a term t in document d, where DF

is the count of occurrences of term t in the document set N. In other words, DF is the number

of documents in which the word is present. We consider one occurrence if the term consists in

the document at least once, we do not need to know the number of times the term is present.

Chapter 3 Architecture and

Conception

18

𝐷𝐹(𝑡) = 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

3.2.3.4 Inverse Document Frequency (IDF):

 The Inverse Document Frequency which is considered to be a discriminating measure for

a term in the text collection. It was proposed in 1972, and has since been widely used. IDF in

information retrieval is used to distinguish words that have the same frequency. [18]

𝐼𝐷𝐹(𝑡) = log
𝑁

𝑑𝑓𝑡
+ 1

Equation 3. 9: Inverse Document Frequency

Where, N is total number of documents, dft is document frequency of a term t

3.2.3.5 Term frequency–Inverse document frequency(tf.idf):

now combine the definitions of term frequency (the importance of each index term in the

document(tf)and inverse document frequency (the importance of the index term in the text

collection), to produce a composite weight for each term in each document

𝑤𝑡,𝑑 = 𝑡𝑓(𝑡, 𝑑) ∗ 𝑖𝑑𝑓(𝑡) = 𝑡𝑓(𝑡, 𝑑) ∗ log
𝑁

𝑑𝑓𝑡
+ 1

Equation 3. 10: TF.IDF

3.3 Conception:

Before building the VSM model to calculate similarity, there are a few preprocessing to do,

this steps called the NLP Pipeline. the pipeline includes the following:

 Tokenization

 Punctuation and Stop Words Removal

 Stemming or Lemmatization

 Creating the Bag of Words

 building a VSM model

To show the process of building our mode, we have chosen two sample texts extracted from

the book “Please Look After Mom” by “Kyung-sook Shin”

Chapter 3 Architecture and

Conception

19

Figure 3. 2 Text samples used for conceptions

3.3.1 Tokenization:

Given a character sequence and a defined document unit, tokenization is the task of chopping

it up into pieces, called tokens, this will produce us a list of single items to process.

Figure 3. 3 Tokenization of first document

Figure 3. 4 Tokenization of second document

3.3.2 Punctuation Removal:

Removing punctuation is the process of deleting all the punctuation marks as dots, comma,

and quotes.

Chapter 3 Architecture and

Conception

20

Figure 3. 5 Punctuation removal from d1

Figure 3. 6 Punctuation removal from d2

3.3.3 Stop-word removal:

 Stop-word removal is the process for deleting all the words that have no meaning. Stop

words include the large number of prepositions, pronouns, conjunctions, etc. in sentences.

These words need to be removed before we analyze the text, so that the frequently used words

are mainly the words relevant to the context and not common words used in the text

Figure 3. 7 Stop word removing from d1

Figure 3. 8 Stop word removing from d2

Chapter 3 Architecture and

Conception

21

3.3.4 Lemmatization:

 Lemmatization usually refers to doing things properly with the use of a vocabulary and

morphological analysis of words, normally aiming to remove inflectional endings only and to

return the base LEMMA or dictionary form of a word, which is known as the lemma

Its result would be:

Figure 3. 9 Lemmatization of d1

Figure 3. 10 lemmatization of d2

Chapter 3 Architecture and

Conception

22

3.3.5 Creating words-bag:

Figure 3. 11 Creation of words-bag from d1 and d2

After we create our words-bag, and normalize the two texts, now we move to term weighting.

3.3.6 Compute the term frequency:

Figure 3. 12 Term weights of d1

Figure 3. 13 Term weights of d2

Now, we calculate our IDF, which would be the same for both documents

Chapter 3 Architecture and

Conception

23

Figure 3. 14 the inverse document frequency weights

After calculation the Term frequency and inversed term frequency, we compute TF-IDF to get

the final indexed files in order to apply the VSM techniques and calculate the similarity

between those documents

The TF-IDF for the first file is going to be:

Figure 3. 15 TF-IDF weights of d1

And for the second document:

Figure 3. 16 TF-IDF weights of d2

3.4 Applying the vector space model Techniques:

Like that, we are ready to measure similarity using deferent techniques, but in order to do that,

we have first to calculate the length of our vectors and the dot product of them

Chapter 3 Architecture and

Conception

24

𝑑𝑜𝑡(𝑑1, 𝑑2) = ∑𝑤𝑖,𝑑1 ∗ 𝑤𝑖,𝑑2 where wi, d1 is the weight of term i in document d1, and wi,d2

Is the weight of term i in document d2

𝑑𝑜𝑡(𝑑1, 𝑑2) = 0.0625 ∗ 0.0526 + 0.10581 ∗ 0.0000 + ⋯+ 0.125 ∗ 0.0256

𝑑𝑜𝑡 (𝑑1, 𝑑2) = 0.01315

Now, the length of d1 and d2:

𝑙𝑒𝑛(𝑑) = √𝑥1
2 + 𝑥2

2 + ⋯+ 𝑥𝑖
2

Equation 3. 11: Vectors Length

𝑙𝑒𝑛(𝑑1) = √0.06252 + 0.1058192 + ⋯+ 0.1252

𝑙𝑒𝑛(𝑑1) = 0.3972

𝑙𝑒𝑛(𝑑2) = √0.089052 + 0.052602 + 0.089052 + ⋯+ 0.05262

𝑙𝑒𝑛(𝑑2) = 0.3886

Cosine Similarity:

As we introduced the cosine similarity, it is used to compute the angel between the vectors

for documents and query. We will apply the below equation of cosine similarity on our

example:

𝑆𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒(𝑑1, 𝑑2) = 𝑐𝑜𝑠𝜃 =
𝑑1⃗⃗ ⃗⃗ ∙ 𝑑2⃗⃗ ⃗⃗

‖𝑑1⃗⃗ ⃗⃗ ‖‖𝑑2⃗⃗ ⃗⃗ ‖

Chapter 3 Architecture and

Conception

25

𝑆𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒(𝑑1, 𝑑2) = 𝑐𝑜𝑠𝜃 =
𝑑1⃗⃗ ⃗⃗ ∙ 𝑑2⃗⃗ ⃗⃗

‖𝑑1⃗⃗ ⃗⃗ ‖‖𝑑2⃗⃗ ⃗⃗ ‖
=

0.01315

0.3972 ∗ 0.3886

𝑆𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒(𝑑1, 𝑑2) = 0.08516

𝑆𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒(𝑑1, 𝑑2) = 08,52%

Jaccard Similarity:

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑

𝑑1⃗⃗ ⃗⃗ ∙ 𝑑2⃗⃗ ⃗⃗

𝑑1⃗⃗ ⃗⃗ 2 + 𝑑2⃗⃗ ⃗⃗ 2 − 𝑑1⃗⃗ ⃗⃗ ∙ 𝑑2⃗⃗ ⃗⃗

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑 =
0.01315

0.1578 + 0.15106 − 0.01315

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑 = 0.0444

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑 = 04,44%

Dice Similarity:

𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑑1, 𝑑2) = 2
𝑑1⃗⃗ ⃗⃗ ∙ 𝑑2⃗⃗ ⃗⃗

𝑑1⃗⃗ ⃗⃗ 2 + 𝑑2⃗⃗ ⃗⃗ 2

𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑑1, 𝑑2) = 2
0.01315

0.1578 + 0.15106

𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑑1, 𝑑2) = 0.08514

𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑑1, 𝑑2) = 08,51%

3.5 Conclusion:

 In this chapter, we have defined what is a vector space model, it’s main techniques and

approaches, then the main steps for implementing it to build a comparison system. We will

show on the next chapter the tool used to apply those techniques in vector space model and

it’s results as well.

Chapter 04

Implementation

Chapter 4

Implementation

27

CHAPTER 4. IMPLEMENTATION

4.1 Introduction:

 This chapter represents the last step of our work, which mean the implementing of our

model and discuss the results in the right environment. In this step we will choose the

environment, the tools and the language used to develop our model, then we will give an

overview of the work done in form of codes then the last result of our work as a desktop

application for comparing two texts or documents.

4.2 Programming Language:

 To develop our model, we choose Python as a programming language because it’s easy

to use, powerful and versatile (image processing, game developing, data science analyzing...)

4.2.1 Python Presentation:

 Python is an interpreted, high-level and general-purpose programming language.

Created by Guido van Rossum and first released in 1991, Python's design philosophy

emphasizes code readability with its notable use of significant whitespace. Its language

constructs and object-oriented approach aim to help programmers write clear, logical code for

small and large-scale projects. [19]

Python has so many features, we mention:

 Built-in high-level data types: strings, lists, dictionaries, etc.

 The usual control structures: if, ifelse, ifelifelse, while, plus a powerful collection

iterator (for).

 Multiple levels of organizational structure: functions, classes, modules, and packages.

These assist in organizing code.

 Compile on the fly to byte code Source code is compiled to byte code without a

separate compile step.

Chapter 4

Implementation

28

4.2.2 Interactive Python:

 If you execute Python from the command line with no script (no arguments), Python

gives you an interactive prompt. This is an excellent facility for learning Python and for trying

small snippets of code.

 Start the Python interactive interpreter by typing “python” with no arguments at the

command line. For example:

Figure 4. 1 Executing Python from CMD

4.3 Environment and tools:

 We have chosen PyCharm IDE (integrated development environment), version 2019.3

under windows 8.1 as an operation system. We choose it because it’s the most widely used

IDEs for Python programming language, and it provides coding assistance and analysis, with

code completion, syntax and error highlighting, linter integration, and quick fixes. We also

use PyQt designer to create the application interfaces, we choose it because it’s easy and

handy to use and use drag to design style.

4.3.1 Presentation of PyCharm:

 PyCharm Is an IDE used in computer programming, specifically for the Python

language. It is developed by the Czech company JetBrains. It provides code analysis, a

graphical debugger, an integrated unit tester, integration with version control systems

(VCSes), and supports web development with Django as well as Data Science with Anaconda.

Chapter 4

Implementation

29

 PyCharm was developed by jetBrains as a cross-platform IDE for Python. In addition

to supporting versions 2.x and 3.x of Python, PyCharm is also compatible with Windows,

Linux, and macOS.

Figure 4. 2 PyCharm interface

4.3.2 PyQt presentation:

 PyQt is one of the most popular Python bindings for the Qt cross-platform C++ framework,

implemented as a Python plug in. PyQt is free software developed by the British firm

Riverbank Computing. PyQt supports Microsoft Windows as well as various editions of

UNIX, including Linux and MacOS.

 PyQt is available in two editions: PyQt4 which will build against Qt 4.x and 5.x and

PyQt5 which will only build against 5.x. Both editions can be built for Python 2 and 3. PyQt

contains over 620 classes that cover graphical user interfaces, XML handling, network

communication, SQL databases, Web browsing and other technologies available in Qt.

Chapter 4

Implementation

30

4.3.3 PyQt designer:

 Qt Designer is the Qt tool for designing and building graphical user interfaces. It allows

you to design widgets, dialogs or complete main windows using on-screen forms and a simple

drag-and-drop interface. It has the ability to preview your designs to ensure they work as you

intended, and to allow you to prototype them with your users, before you have to write any

code.

Figure 4. 3 PyQt designer

 Qt Designer uses XML “.ui” files to store designs and does not generate any code

itself. Qt includes the “uic” utility that generates the C++ code that creates the user interface.

Like the “uic” utility it can also generate the Python code that will create the user interface.

PyQt5’s “pyuic5” utility is a command line interface to the “uic” module.

Chapter 4

Implementation

31

Figure 4. 4 Generating python code from .ui

 The code that is generated has an identical structure to that generated by Qt’s “uic” and

can be used in the same way.

Figure 4. 5 Python code generated from interface design

4.4 Application Presentation:

 Our application is a desktop application for comparison between two texts or two

documents, it uses the Vector Space Models to calculate and compare the similarity. It’s made

up of few windows which we will describe.

Chapter 4

Implementation

32

4.4.1 Main window:

Figure 4. 6 Main Window of application

 This window is the first one of our application, from it the user can choose the

language of the next interfaces and also, the language of the texts he wants to compare or

documents. If he clicks the English button, the next windows will be completely in English as

well as for if he chooses French.

4.4.2 English window:

Figure 4. 7 Texts tab from English Window of application

Chapter 4

Implementation

33

 This is the Second window of our application, it’s divided into two tabs, the first one is

for texts, and the second one is for uploading documents.

 The first tab is consisting of two plain text edits which in them the user write or copy

the texts he want to calculate the similarity between them, and as we said before, this window

is only for English texts, so if he write a French one, and click compare, a message box will

show to inform him to insert an English one as in the figure below

Figure 4. 8 Error message from English window

 Also, from this window, the user can choose which type of similarity he want to use,

either a Cosine, Jaccard or Dice similarity or all of them, but he has to choose at least one, if

he didn’t another message box will appear to tell him that he must choose at least one

similarity as in the figure below

Chapter 4

Implementation

34

Figure 4. 9 Error message from English window

 So, the user has to enter English texts, and choose one similarity option or more before

he pushes the button compare. If all the requirements are satisfied, a push up window will

appear to show the results of the similarities he chooses.

The Second tab is documents,

Chapter 4

Implementation

35

Figure 4. 10 Documents tab from English window

 This window is consisting of two buttons to upload documents with “.docx” format or

“.txt” format. When the user pushes the upload button a dialog window pops up and tell him

to choose a file, and when he chooses one, the name of this file is going to appear next to the

button he pushes as in the figure below

Figure 4. 11 Dialog window to choose documents

 Those documents must be both in English, or a message box will appear to tell him to

choose a valid English document

Chapter 4

Implementation

36

Figure 4. 12 Error message from Documents tab

Then the user must at least check one checkbox to choose a similarity or more than one to

compare between documents

4.4.3 French window:

 This window is almost like the English one, when the user clicks the French button

from the main window, it appears completely in French and the documents or texts mush be

in French too.

Chapter 4

Implementation

37

Figure 4. 13 Texts tab from French window

 The first tab consists of two plain text entries where the user writes or copy only

French texts, otherwise, he got an error to re-enter a French one, also, from this tab the

user must choose at least one similarity type to calculate,

Chapter 4

Implementation

38

Figure 4. 14 Documents tab from French window

 From this window the user can choose files or documents to upload, those documents

must also be in French, and then he has to choose a similarity to calculate

4.5 Result discussion:

Figure 4. 15 English similarity window

 This window shows the results of the similarities that user selected from the previous

English window, if he didn’t choose one of them, the window returns “Not selected”. A same

window will appear if the user chooses to work with French documents as in the figure below

 Figure 4. 16 French similarity window

Chapter 4

Implementation

39

4.6 Conclusion:

 In this chapter, we describe and present the programming language and tools we have

used to implement our model, then we see the application of the model by showing the

deferent interfaces and windows.

General Conclusion

40

GENERAL CONCLUSION

 In this paper, we have developed and implemented an application for comparing and

finding the similarity between texts or documents. This paper is significant in many terms, we

have presented the main features of Vector Space Model and we have implemented these

features.

 This work can the backbone of successful text mining operations such as searching and

information retrieval (IR), text classification, information extraction (IE), document

clustering, sentiment analysis, machine translation, text summarization, and natural language

processing (NLP). This work also can be a great help for detecting plagiarism.

 We will work in the future to improve the tool in order to enlarge its features, such as

covering multiple file formats like pdf, html and other file formats. Also, we try to implement

this application to work in multiple platforms as Linux, macOS, and phone operating systems.

Moreover, we will try to make this work supports and covers other Languages like Arabic

Language and many others. Also, we will try to develop this application in order to work with

it online.

 We are glad to build such tool and we do appreciate all the readers of this report to try

it out and helps us in order to enhance the current tool.

41

REFERENCES

[1] A. Kulkarni, C. More, M. Kulkarni and V. Bhandeka, Text Analytic Tools for Semantic

Similarity, vol. 2, Imp. J. Interdiscip. Res, 2016.

[2] D. D. PRASETYA, A. PRASETYA WIBAWA et T. HIRASHIMA, The performance of

text similarity algorithms, vol. 4, International Journal of Advances in Intelligent

Informatics, 2018, pp. 63-69.

[3] Mihalcea R, Corley, C. et Strapparava, Corpus based and knowledge-based measures of

text semantic similarity, Boston, MA: In Proceedings of the American Association for

Artificial Intelligence, 2006.

[4] Miller, G.A., Beckwith, R., Fellbaum, C.D. , Gross,D et Miller, K, WordNet: An online

lexical database, vol. 3, 1990, pp. 235-244.

[5] Fahmy, et W. H. Gomaa and A. A., A survey of text similarity approaches, vol. 68, Int. J.

Comput. Appl, 2013.

[6] J. Wang, G. Li et J. Fe, “Fast-join: An efficient method for fuzzy token matching based

string similarity join, IEEE 27th International Conference on Data Engineering, 2011, p.

458–469.

42

[7] M. Yu, G. Li, D. Deng et J. Feng, String similarity search and join: a survey, vol. 10,

Front. Comput. Sci, 2016, p. 399–417.

[8] M. Y. Bilenko, Learnable similarity functions and their application to record linkage and

clustering, 2006.

[9] R. Ali and M. M. S. Beg, Modified rough set based aggregation for effective evaluation

of web search systems, Cincinnati, OH: Annual Meeting of the North American Fuzzy

Information Processing Society, 2009.

[10] Ciesielski K., Wierzchoń S.T. et Kłopotek M.A., An Immune Network for Contextual

Text Data Clustering, vol. 4163, Springer, Berlin, 2006.

[11] L. M., Thesaurus-Based Automatic Indexing, Handbook of Research on Text and Web

Mining Technologies, 2009, pp. 331-345.

[12] Jiawei Han, Micheline Kamber et Jian Pei, Data Mining: Concepts and Techniques,

2012.

[13] Bank, J. et Cole, B, Calculating the jaccard similarity coefficient with map reduce for

entity pairs in wikipedia, 2008.

[14] P. Jaccard, étude Comparative de la distribuition florale dans une portion des Alpes et

des Jura, vol. 7, Bulletin de la Société Vaudoise des Sciences Naturelles, 1901, pp. 547-

579.

43

[15] L. Dice, Measures of amount of ecologic association between species, vol. 26, Ecology,

1945, p. 297–302.

[16] Salton, G and McGill, M.J, Introduction to Modern Information Retrieval, New York:

McGraw-Hill Book Co, 1983.

[17] Gerard Salton and Christopher Buckley, Term-weighting approaches in automatic text

retrieval, vol. 24, Information Processing & Management, 1988, pp. 513-523.

[18] Kenneth Church and William A. Gale, Inverse Document Frequency (IDF): A Measure

of Deviations from Poisson, 3rd workshop ed., Very Large Corpora, 1995.

[19] D. Kuhlman, A Python Book Beginning Python, Advanced Python, and Python

Exercises, 2015.

44

Abstract:

The study and comparison of documents has proven to be a very important task for the

detection of plagiarism, the retrieval of new information as well as the categorization of

documents

VSMs (Vector Space Models) are one of the most efficient models of the information

retrieval (IR) system, These models allow to represent complex information in a relatively

simplistic form, which makes it possible to apply vector computation for text analysis.

This project aims to develop a text comparison system based on VSMs which allows to

indicate the correspondence rate (similarity) between two texts or given documents using

the python language.

Key Words:

VSM- Vector Space Models- Document analysis- Plagiarism detection- Python

 ملخص :

عن السرقات الأدبية واسترجاع المعلومات الجديدة وكذلك أثبتت دراسة الوثائق ومقارنتها أنها مهمة بالغة الأهمية للكشف

 .تصنيف الوثائق

تسمح هذه النماذج .(IR) واحدة من أكثر نماذج نظام استرجاع المعلومات كفاءة VSM(Vector Space Models) تعد

 .صوصبتمثيل المعلومات المعقدة في شكل مبسط نسبيًا ، مما يسمح بتطبيق حساب المتجه على تحليل الن

التي يمكن أن تشير إلى معدل التطابق)التشابه(بين VSMs يهدف هذا المشروع إلى تطوير نظام مقارنة نص يعتمد على

 .python نصين أو مستندات معينة باستخدام لغة

 كلمات مفتاحية :

45

 VSM-Vector Space Models - بايثون -كشف السرقة الأدبية –تحليل الوثائق

Résumé :

L’étude et la comparaison des documents s’est montrée une tâche très importante pour la

détection de plagiat, la récupération de nouvelles informations ainsi que la catégorisation

des

documents

Les VSM(Vector Space Models) sont l’un des modèles les plus efficaces du système de

recherche d’informations (IR) (information retrieval, Ces modèles permettent de représenter

des informations complexes sous une forme relativement simpliste, ce qui permet

d'appliquer le calcul vectoriel à l'analyse de textes.

Ce projet vise à développer un système de comparaison de textes basés sur les VSM et qui

permet d’indiquer le taux de correspondance (similarité) entre deux textes ou documents

donnés en utilisant la langages python.

Mots clés :

VSM -Vector Space Models- Analyse des documents – détection de plagiat- Python

