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CHAPTER 1. GENERAL INTRODUCTION 

1.1 Context:  

          Similarity has been a subject of great interest in human history since a long time ago. 

Even before computers were made, humans have been interested in finding similarity in 

everything. Each and every field of study provides their own definition of what similarity is. 

In Psychology similarity “…refers to the psychological nearness or proximity of two mental 

representations.” while in music it’s “…a certain similarity between two or more musical 

fragments “and in geometry “Two geometrical objects are called similar if they both have the 

same shape.” 

            Similarity is a broad and abstract topic. Every time Similarity is mentioned, the 

question pops up: “What kind of Similarity?” The topic is quite big in the Information 

Retrieval field and lately it has become quite the hype again. People are making search 

engines, plagiarism programs, optimizing search algorithms, finding out how to specify the 

searches better and faster, and where to focus whether it be images, sound or strings.  

           Definitions for similarity are different for every field but what keeps going in each of 

them is the use of one big field to prove the similarity: Math. 

          Math is used to calculate similarity where it dominates the field. After the start of two 

new fields in last century, Information Theory and Computer Science, the topic of similarity 

has not become smaller at all. Instead by using the computer it has been easier to find out how 

similar two or more things are to each other. 

           Textual similarity which is a subcategory of Information Retrieval is quite close to its 

brother the search engine since both takes a query and find forth the similar texts for the 

query. Where it is expected from search engines to find the respective query’s document of 

relevance and rank them, it is expected from the text similarity to find out how similar the 

query is to the documents. Both overlap a lot but are still a bit different. Even when there is no 

shortage of textual materials on a particular topic, procedures for indexing or extracting the 

knowledge or conceptual information contained in them can be lacking. Recently developed 

information retrieval systems (IRS) are based on the concept of a vector space Models.  
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1.2  Problematic:  

         The world witnesses a huge informational revolution that brings out lots of information 

and researches. Researching for this information without using search engines is a hard task or 

it is impossible to gain accurate information without them. Besides, the importance of 

information retrieval (IR) sciences has evolved. This science depended only on libraries in the 

past, but with the widespread and the evolution of digital libraries and the Internet has 

dramatically transformed the processing, storage, compare and retrieval of information. But 

this transformation brings a lot of problems, some of them are retrieving information becomes 

more difficult, also, one of the biggest problems is the plagiarism that becomes more and 

more withing the growth of information in the digital areas, and its detection becomes harder. 

        Detection of plagiarism can be undertaken in a variety of ways. Human detection is the 

most traditional form of identifying plagiarism from written work. This can be a lengthy and 

time-consuming task for the reader and can also result in inconsistencies in how plagiarism is 

identified within an organization. So, how can we make the detect the plagiarism without any 

human interaction easier? and how we can make information retrieving and classification 

more accurate and efficacy?    

1.3 Objectives: 

        Nowadays, measuring the similarity of documents plays an important role in text related 

researches and applications such as document clustering, plagiarism detection, information 

retrieval, machine translation and automatic essay scoring. 

       Our objective is to develop and evaluate the performance of a text comparison system 

based on Vector Space Models which indicate the similarity between texts or documents. 

1.4 Thesis plan: 

         In addition to this introductive chapter, our work will be divided into three chapters, 2
nd 

chapter includes a state of art that defines and explains some of the measuring similarity 

models and give a little brief about the model we choose to study.  
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        In the 3
rd

 chapter, we will look deep in the vector space model we already choose, we 

will see its definitions, main techniques and approaches, then we will create our own model 

and explains the steps of creation in the meanwhile. 

        In the last chapter, we will implement our model using Python as programming language 

and PyCharm as an IDE, then we will see the interfaces and windows of our application and 

its results. 
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CHAPTER 2. STATE OF ART  

2.1 Introduction: 

      Measuring similarity between documents is fundamental to most forms of document 

analysis. Some of the applications that use document similarity measures include: 

Information retrieval, text classification, document clustering, topic modeling, topic tracking, 

matrix decomposition. In the next section, we will see some of the main methods and 

algorithms that are used in similarity measuring.  

2.2 Text similarity methods: 

      Different approaches have been promoted to measure the similarity between one text 

with another. The method is divided into four major groups, String-based, Corpus-based, 

Knowledge-based, and Hybrid text similarities; as shown in Fig. 1. These approaches will be 

discussed in the following subsections. 

 

 

 

 

 

Figure 2. 1 Four major groups of text similarity methods and algorithms 

2.2.1  Corpus-based Similarity: 

          Corpus-based similarity uses a semantic approach. This similarity approach determines 

the similarity between two concepts based on the information extracted from a large 

corpora. A corpus (plural corpora) is a large collection of electronic written or spoken text. 

 

Text similarity 

measures  

Corpus-Based Knowledge-Based String-Based Hybride-Based 
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Corpus contains a predefined set of sentences and their translation to other language. The 

aim is to match input text with the text in the corpus and achieve translation [1]. Many 

corpus-based similarity or relatedness measures are based on concept-based resources, 

such as Wikipedia. 

         Some of corpus-based similarity measures are Hyperspace Analogue to Language (HAL), 

Latent Semantic Analysis (LSA), Explicit Semantic Analysis (ESA), Pointwise Mutual 

Information (PMI), Normalized Google Distance (NGD), and Extracting Distributional Similar 

words using Co-occurrence (DISCO). [2] 

 

   Figure 2. 2 Corpus-Based Similarity Measures[5] 

2.2.2 Knowledge-Based Similarity: 

           Knowledge-Based Similarity is one of semantic similarity measures that bases on 

identifying the degree of similarity between words using information derived from semantic 

networks [3]. WordNet [4]is the most popular semantic network in the area of measuring 

the Knowledge-Based similarity between words; WordNet is a large lexical database of 
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English. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms 

(synsets), each expressing a distinct concept. Synsets are interlinked by means of 

conceptual-semantic and lexical relations  .As shown in figure 3, Knowledge-based similarity 

measures can be divided roughly into two groups: measures of semantic similarity and 

measures of semantic relatedness.[5]  

          There are six measures of semantic similarity; three of them are based on information 

content: Resnik (res), Lin (lin) and Jiang & Conrath (jcn). The other three measures are based 

on path length: Leacock & Chodorow (lch), Wu & Palmer (wup) and Path Length (path). 

Furthermore, there are three measures of semantic relatedness: St.Onge (hso) , Lesk (lesk) 

and vector pairs (vector). [5] 

 

Figure 2. 3 Knowledge-Based Similarity Measures [5] 

2.2.3  String-based Similarity: 

           String-based similarity is the oldest, simplest yet most popular measurement 

approach. This measure operates on string sequences and character composition. Two main 

types of string similarity functions are character-based similarity functions, and token-based 

similarity functions.  
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2.2.3.1   Character-based Similarity: 

          Is also called sequence-based or edit distance (ED) measurement. It takes two strings 

of characters and then calculates the edit distance (including insertion, deletion and 

substitution) between them. Character-based quantifies character similarity between two 

strings to quantify the similarity, for instance ED which is the minimum number of single-

character edit operations needed to transform one to another [6]. In another word, two 

strings are similar if the edit distance minimum operation number is smaller than the given 

threshold. Some examples of this approach are Hamming distance, Levenshtein distance. 

Damerau-Levenshtein, Needleman-Wunsch, Longest Common Subsequence. Smith-

Waterman, Jaro, JaroWinkler, and N-gram.[5] 

2.2.3.2   The term-based similarity: 

           Also known as token-based because it models each string as a set of tokens. The 

similarity between strings can be assessed by manipulating sets of tokens, such as words. 

The main idea behind this approach is to perform two string similarity measurement based 

on general tokens, correspond to its token sets. [7] If the similarity is denoted, the string pair 

is flagged as being similar or duplicate. Term-based similarity address drawback on 

character-based when it works on larger string. [8] 

            The main characteristic of token-based similarity is the use of the overlap of two 

token sets as likeness quantification. The overlap is computed based on exactly matched 

token pairs without considering other similar tokens. Token-based similarity approach is 

useful for recognizing the term rearrangement by breaking the strings into substrings. Vector 

space models (Jaccard similarity, Dice’s coefficient, Cosine similarity) are some examples of 

these methods. And it will be the core subject that we will treat in the next chapter. 
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   Figure 2. 4 String-Based Similarity Measures [5] 

2.2.4   Hybrid Similarities: 

        In addition to the three categories previously described, there are still several 

similarity measures that cannot be categorized into any prior family. The idea of this 

approach is to combine the previously described approaches, including string-based, 

corpus-based, and knowledge-based similarity to reach a better metric by adopt their 

advantages.[5] 

2.3  Token-based models’ objectives: 

          Token-based similarities are very widely used in different areas. Probably, it is the most 

well-known approach to work with texts, that’s because of its:  

• Simplicity, since it is based on a linear algebra model. 
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• Ability to incorporate term weights any kind of term weight can be added. 

• Can measure similarity between almost everything; query and document, document and 

document, query and query, sentence and sentences and so on. 

• Partial matching is allowed. 

• Ranking of documents compared to their relevance is allowed. 

2.4  Conclusion: 

       In this chapter, we saw some of the main methods used in textual similarity measuring, 

and we introduce them and their algorithms, then we have seen the String-Based similarity 

method and its algorithms that called vector space models which would be our subject in the 

next chapters. 
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CHAPTER 3. ARCHITECTURE AND CONCEPTION 

3.1  Introduction:  

In this chapter we will define the VSM (Vector Space Model), then we will explain the four 

main techniques of vector space model. After that we try to concept the model and apply 

those four techniques. 

3.2  Vector Space Model: 

3.2.1  Definitions:  

Definition1: The Vector space model is a model where the document and the query both are 

represented in vector, each vector constructed of weight in a multidimensional space, whose 

dimensions are the terms used to build an index that represents documents 

Definition2: A content-based model that represents a document as a vector in an n-

dimensional space, where each dimension represents a term and similarity between two 

documents is measured through cosine angle between the two vectors [9] 

Definition3: One of classical representations of document content. The documents are points 

(or vectors rooted in coordinate origin) in this high-dimensional space (spanned by terms 

being coordinate axes), with the point (vector) coordinates reflecting frequencies of different 

terms (linearly or in a more complex manner) in a given document [10] 

Definition4: Is an algebraic model for representing documents (not only text) as vectors of 

identifiers, such as, for example, index terms. It is used in information filtering, information 

retrieval, indexing and relevancy rankings. Its first use was in the SMART Information 

Retrieval System [11] 

3.2.2  Models and approaches: 

As we said before, there is four main techniques in VSM, which are:  

 Inner product  

 Cosine similarity  
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 Jaccard index 

 Dice index 

3.2.2.1     Inner Product:  

        Inner product is the first technique in the vector space model. This technique considered 

as a base for other techniques. All the other techniques depend on the results of this technique 

to compute the results of their functions. 

        An inner product is a generalization of the dot product. In a vector space, it is a way to 

multiply vectors together, with the result of this 

multiplication being a scalar. 

 

 

 

 

 

Figure 3. 1 representation of inner product 

       There are several different ways of representing/calculating the inner product. Equation 

(1) gives you the geometric meaning of inner product. Equation (2) would not shows you any 

idea of visualization, but it gives you a way of calculating the inner product with very simple 

multiplication and sums (Equation (2) would be the most common ways to calculate the inner 

product in most of the application) 

𝑈 ∙ 𝑉 = |𝑈||𝑉|cos𝜃 

Equation 3. 1: Geometric Inner product                                           

𝑢 ∙ 𝑣 = 𝑥1 × 𝑥2 + 𝑦1 × 𝑦2 

Equation 3. 2: Inner Product                          

       The idea here is to implement our documents or texts as vectors and to find the similarity 

between these documents. 
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3.2.2.2     Cosine Similarity: 

Cosine similarity measures the similarity between two vectors of an inner product space. It is 

measured by the cosine of the angle between two vectors and determines whether two vectors 

are pointing in roughly the same direction. It is often used to measure document similarity in 

text analysis. [12] 

Let  𝑢 and 𝑣 be two vectors for comparison. Using the cosine measure as a similarity 

function, we have  

𝑠𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒(𝑢, 𝑣) = 𝑐𝑜𝑠𝜃 =
𝑢 ∙ 𝑣

‖𝑢‖‖𝑣‖
=

𝑥1 × 𝑥2 + 𝑦1 × 𝑦2

√𝑥1
2 + 𝑦1

2 × √𝑥2
2 + 𝑦2

2
 

Equation 3. 3: Cosine Similarity   

       The measure computes the cosine of the angle between vectors u and v. A cosine value of 

0 means that the two vectors are at 90 degrees to each other (orthogonal) and have no match, 

which means the documents we are comparing are quietly different. The closer the cosine 

value to 1, the smaller the angle and the greater the match between documents. 

3.2.2.3     Jaccard Similarity:  

” Also known as Jaccard index, the Jaccard similarity coefficient is a statistical measure 

of similarity between sample sets” [13] 

      The Jaccard index or Jaccard coefficient [14] is the ratio between the cardinality (the size) 

of the intersection of the sets considered and the cardinality of the union of the sets. It allows 

to evaluate the similarity between the sets. The documents d1 and d2 are therefore represented 

as sets of terms. The similarity obtained 𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑 ∈ [0,1] 

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑(𝑑1, 𝑑2) =
‖𝑑1 ∩ 𝑑2‖

‖𝑑1 ∪ 𝑑2‖
 

Equation 3. 4 : Jaccard Similarity for sets  

It is also possible to use vector weighted representation: 

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑 =
𝑢 ∙ 𝑣

𝑢2 + 𝑣2 − 𝑢 ∙ 𝑣
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𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑 =
𝑥1 × 𝑥2 + 𝑦1 × 𝑦2

(𝑥1 + 𝑦1)2 + (𝑥2 + 𝑦2)2 − 𝑥1 × 𝑥2 + 𝑦1 × 𝑦2
 

Equation 3. 5: Jaccard Similarity for vectors  

3.2.2.4     Dice Similarity:  

       The D index measures the similarity between two documents d1 and d2 based on the 

number of terms common between d1 and d2. Dice measurement is used like Jaccard to find 

the similarity between two vectors but gives twice the weight to agreements, the dice 

similarity measure [15] obtained by the formula:  

𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑑1, 𝑑2) =
2𝑁𝑐

𝑁1 + 𝑁2
 

Equation 3. 6: Dice Similarity for sets 

Where NC is the number of common words between d1 and d2, and N1(resp. N2) is the 

number of terms in d1(resp. d2) 

While the vector weighted calculation can be done with the formula:  

𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑑1, 𝑑2) = 2 
 𝑢 ∙ 𝑣

𝑢2 + 𝑣2
 

𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑢, 𝑣) = 2 
𝑥1 × 𝑥2 + 𝑦1 × 𝑦2

(𝑥1 + 𝑦1)2 + (𝑥2 + 𝑦2)2
 

Equation 3. 7: Dice Similarity for vectors 

3.2.3  Term Weighting:  

      Term weighting is a procedure that takes place during the text indexing process in order to 

assess the value of each term to the document. Term weighting is the assignment of numerical 

values to terms that represent their importance in a document in order to improve retrieval 

effectiveness [16] 

       Essentially it considers the relative importance of individual words in an information 

retrieval system, which can improve system effectiveness, since not all the terms in a given 

document collection are of equal importance. Weighing the terms is the means that enables 

the retrieval system to determine the importance of a given term in a certain document or a 
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query. It is a crucial component of any information retrieval system, a component that has 

shown great potential for improving the retrieval effectiveness of an information retrieval 

system [17]. One of the most important term weighting method is TF-IDF.  

3.2.3.1     TF-IDF weighting:  

      tf–idf or TFIDF, short for term frequency–inverse document frequency, is a numerical 

statistic that is intended to reflect how important a word is to a document in a collection or 

corpus.  

     Typically, the tf-idf weight is composed by two terms: the first computes the normalized 

Term Frequency (TF), aka. the number of times a word appears in a document, divided by the 

total number of words in that document; the second term is the Inverse Document Frequency 

(IDF), computed as the logarithm of the number of the documents in the corpus divided by the 

number of documents where the specific term appears 

3.2.3.2    Term Frequency (TF):  

which measures how frequently a term occurs in a document. Since every document is 

different in length, it is possible that a term would appear much more times in long documents 

than shorter ones. Thus, the term frequency is often divided by the document length (aka. the 

total number of terms in the document) as a way of normalization: 

𝑇𝐹(𝑡, 𝑑) =  
𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡 𝑖𝑛 𝑑 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑑 
 

Equation 3. 8: Term Frequency  

Where t: term, d: document  

3.2.3.3     Document frequency (DF):  

     This measures the importance of document in whole set of corpora, this is very similar to 

TF. The only difference is that TF is frequency counter for a term t in document d, where DF 

is the count of occurrences of term t in the document set N. In other words, DF is the number 

of documents in which the word is present. We consider one occurrence if the term consists in 

the document at least once, we do not need to know the number of times the term is present. 
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𝐷𝐹(𝑡) = 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 

3.2.3.4    Inverse Document Frequency (IDF): 

     The Inverse Document Frequency which is considered to be a discriminating measure for 

a term in the text collection. It was proposed in 1972, and has since been widely used. IDF in 

information retrieval is used to distinguish words that have the same frequency. [18] 

𝐼𝐷𝐹(𝑡) = log
𝑁

𝑑𝑓𝑡
+ 1 

Equation 3. 9: Inverse Document Frequency  

Where, N is total number of documents, dft is document frequency of a term t  

3.2.3.5    Term frequency–Inverse document frequency(tf.idf): 

now combine the definitions of term frequency (the importance of each index term in the 

document(tf)and inverse document frequency (the importance of the index term in the text 

collection), to produce a composite weight for each term in each document 

𝑤𝑡,𝑑 = 𝑡𝑓(𝑡, 𝑑) ∗ 𝑖𝑑𝑓(𝑡) = 𝑡𝑓(𝑡, 𝑑) ∗ log
𝑁

𝑑𝑓𝑡
+ 1 

Equation 3. 10: TF.IDF  

3.3  Conception: 

Before building the VSM model to calculate similarity, there are a few preprocessing to do, 

this steps called the NLP Pipeline. the pipeline includes the following: 

 Tokenization  

 Punctuation and Stop Words Removal  

 Stemming or Lemmatization 

 Creating the Bag of Words 

 building a VSM model  

To show the process of building our mode, we have chosen two sample texts extracted from 

the book “Please Look After Mom” by “Kyung-sook Shin”  
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Figure 3. 2 Text samples used for conceptions 

3.3.1  Tokenization: 

Given a character sequence and a defined document unit, tokenization is the task of chopping 

it up into pieces, called tokens, this will produce us a list of single items to process. 

 

Figure 3. 3 Tokenization of first document 

 

Figure 3. 4 Tokenization of second document 

3.3.2  Punctuation Removal: 

Removing punctuation is the process of deleting all the punctuation marks as dots, comma, 

and quotes. 
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Figure 3. 5 Punctuation removal from d1 

 

Figure 3. 6 Punctuation removal from d2 

 

3.3.3  Stop-word removal: 

     Stop-word removal is the process for deleting all the words that have no meaning. Stop 

words include the large number of prepositions, pronouns, conjunctions, etc. in sentences. 

These words need to be removed before we analyze the text, so that the frequently used words 

are mainly the words relevant to the context and not common words used in the text 

 

Figure 3. 7 Stop word removing from d1 

 

Figure 3. 8 Stop word removing from d2 
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3.3.4  Lemmatization:  

       Lemmatization usually refers to doing things properly with the use of a vocabulary and 

morphological analysis of words, normally aiming to remove inflectional endings only and to 

return the base LEMMA or dictionary form of a word, which is known as the lemma 

Its result would be:  

 

Figure 3. 9 Lemmatization of d1 

 

Figure 3. 10 lemmatization of d2 
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3.3.5  Creating words-bag:  

 

Figure 3. 11 Creation of words-bag from d1 and d2 

After we create our words-bag, and normalize the two texts, now we move to term weighting. 

3.3.6  Compute the term frequency:  

 

Figure 3. 12 Term weights of d1 

 

Figure 3. 13 Term weights of d2 

Now, we calculate our IDF, which would be the same for both documents  
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Figure 3. 14 the inverse document frequency weights 

After calculation the Term frequency and inversed term frequency, we compute TF-IDF to get 

the final indexed files in order to apply the VSM techniques and calculate the similarity 

between those documents  

The TF-IDF for the first file is going to be:  

 

Figure 3. 15 TF-IDF weights of d1 

And for the second document:  

 

Figure 3. 16 TF-IDF weights of d2 

3.4  Applying the vector space model Techniques:  

Like that, we are ready to measure similarity using deferent techniques, but in order to do that, 

we have first to calculate the length of our vectors and the dot product of them  
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𝑑𝑜𝑡(𝑑1, 𝑑2) = ∑𝑤𝑖,𝑑1 ∗ 𝑤𝑖,𝑑2 where wi, d1 is the weight of term i in document d1, and wi,d2  

Is the weight of term i in document d2 

𝑑𝑜𝑡(𝑑1, 𝑑2) = 0.0625 ∗ 0.0526 + 0.10581 ∗ 0.0000 + ⋯+ 0.125 ∗ 0.0256      

𝑑𝑜𝑡 (𝑑1, 𝑑2) = 0.01315 

Now, the length of d1 and d2:  

𝑙𝑒𝑛(𝑑) = √𝑥1
2 + 𝑥2

2 + ⋯+ 𝑥𝑖
2 

Equation 3. 11: Vectors Length 

𝑙𝑒𝑛(𝑑1) = √0.06252 + 0.1058192 + ⋯+ 0.1252 

𝑙𝑒𝑛(𝑑1) = 0.3972 

𝑙𝑒𝑛(𝑑2) = √0.089052 + 0.052602 + 0.089052 + ⋯+ 0.05262 

𝑙𝑒𝑛(𝑑2) = 0.3886 

 

Cosine Similarity:  

As we introduced the cosine similarity, it is used to compute the angel between the vectors 

for documents and query. We will apply the below equation of cosine similarity on our 

example:  

𝑆𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒(𝑑1, 𝑑2) = 𝑐𝑜𝑠𝜃 =
𝑑1⃗⃗ ⃗⃗ ∙ 𝑑2⃗⃗ ⃗⃗ 

‖𝑑1⃗⃗ ⃗⃗ ‖‖𝑑2⃗⃗ ⃗⃗ ‖
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𝑆𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒(𝑑1, 𝑑2) = 𝑐𝑜𝑠𝜃 =
𝑑1⃗⃗ ⃗⃗ ∙ 𝑑2⃗⃗ ⃗⃗ 

‖𝑑1⃗⃗ ⃗⃗ ‖‖𝑑2⃗⃗ ⃗⃗ ‖
=

0.01315

0.3972 ∗ 0.3886
 

𝑆𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒(𝑑1, 𝑑2) = 0.08516 

𝑆𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒(𝑑1, 𝑑2) = 08,52%  

Jaccard Similarity:  

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑

𝑑1⃗⃗ ⃗⃗ ∙ 𝑑2⃗⃗ ⃗⃗ 

𝑑1⃗⃗ ⃗⃗ 2 + 𝑑2⃗⃗ ⃗⃗ 2 − 𝑑1⃗⃗ ⃗⃗ ∙ 𝑑2⃗⃗ ⃗⃗ 
 

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑 =
0.01315

0.1578 + 0.15106 − 0.01315
  

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑 = 0.0444 

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑 = 04,44%  

Dice Similarity:  

𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑑1, 𝑑2) = 2
𝑑1⃗⃗ ⃗⃗ ∙ 𝑑2⃗⃗ ⃗⃗ 

𝑑1⃗⃗ ⃗⃗ 2 + 𝑑2⃗⃗ ⃗⃗ 2
 

𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑑1, 𝑑2) = 2
0.01315

0.1578 + 0.15106
 

𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑑1, 𝑑2) = 0.08514 

𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑑1, 𝑑2) = 08,51% 

3.5  Conclusion:  

       In this chapter, we have defined what is a vector space model, it’s main techniques and 

approaches, then the main steps for implementing it to build a comparison system. We will 

show on the next chapter the tool used to apply those techniques in vector space model and 

it’s results as well. 

 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 04 

Implementation 

 

 

 

 

 

 

 

 

 

 



Chapter 4                                                                                                  

Implementation 

27 

 

CHAPTER 4. IMPLEMENTATION 

4.1  Introduction:  

          This chapter represents the last step of our work, which mean the implementing of our 

model and discuss the results in the right environment. In this step we will choose the 

environment, the tools and the language used to develop our model, then we will give an 

overview of the work done in form of codes then the last result of our work as a desktop 

application for comparing two texts or documents. 

4.2  Programming Language:   

         To develop our model, we choose Python as a programming language because it’s easy 

to use, powerful and versatile (image processing, game developing, data science analyzing...) 

4.2.1  Python Presentation:  

          Python is an interpreted, high-level and general-purpose programming language. 

Created by Guido van Rossum and first released in 1991, Python's design philosophy 

emphasizes code readability with its notable use of significant whitespace. Its language 

constructs and object-oriented approach aim to help programmers write clear, logical code for 

small and large-scale projects. [19] 

Python has so many features, we mention:  

 Built-in high-level data types: strings, lists, dictionaries, etc. 

 The usual control structures: if, ifelse, ifelifelse, while, plus a powerful collection 

iterator (for). 

 Multiple levels of organizational structure: functions, classes, modules, and packages. 

These assist in organizing code. 

 Compile on the fly to byte code  Source code is compiled to byte code without a 

separate compile step. 
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4.2.2  Interactive Python: 

          If you execute Python from the command line with no script (no arguments), Python 

gives you an interactive prompt. This is an excellent facility for learning Python and for trying 

small snippets of code.  

         Start the Python interactive interpreter by typing “python” with no arguments at the 

command line. For example: 

 

Figure 4. 1 Executing Python from CMD 

4.3  Environment and tools:  

          We have chosen PyCharm IDE (integrated development environment), version 2019.3 

under windows 8.1 as an operation system. We choose it because it’s the most widely used 

IDEs for Python programming language, and it provides coding assistance and analysis, with 

code completion, syntax and error highlighting, linter integration, and quick fixes. We also 

use PyQt designer to create the application interfaces, we choose it because it’s easy and 

handy to use and use drag to design style.  

4.3.1  Presentation of PyCharm:  

          PyCharm Is an IDE used in computer programming, specifically for the Python 

language. It is developed by the Czech company JetBrains. It provides code analysis, a 

graphical debugger, an integrated unit tester, integration with version control systems 

(VCSes), and supports web development with Django as well as Data Science with Anaconda. 
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           PyCharm was developed by jetBrains as a cross-platform IDE for Python. In addition 

to supporting versions 2.x and 3.x of Python, PyCharm is also compatible with Windows, 

Linux, and macOS. 

 

Figure 4. 2 PyCharm interface 

4.3.2  PyQt presentation:  

         PyQt is one of the most popular Python bindings for the Qt cross-platform C++ framework, 

implemented as a Python plug in. PyQt is free software developed by the British firm 

Riverbank Computing. PyQt supports Microsoft Windows as well as various editions of 

UNIX, including Linux and MacOS. 

          PyQt is available in two editions: PyQt4 which will build against Qt 4.x and 5.x and 

PyQt5 which will only build against 5.x. Both editions can be built for Python 2 and 3. PyQt 

contains over 620 classes that cover graphical user interfaces, XML handling, network 

communication, SQL databases, Web browsing and other technologies available in Qt. 
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4.3.3  PyQt designer:  

          Qt Designer is the Qt tool for designing and building graphical user interfaces. It allows 

you to design widgets, dialogs or complete main windows using on-screen forms and a simple 

drag-and-drop interface. It has the ability to preview your designs to ensure they work as you 

intended, and to allow you to prototype them with your users, before you have to write any 

code. 

 

Figure 4. 3 PyQt designer 

            Qt Designer uses XML “.ui” files to store designs and does not generate any code 

itself. Qt includes the “uic” utility that generates the C++ code that creates the user interface. 

Like the “uic” utility it can also generate the Python code that will create the user interface. 

PyQt5’s “pyuic5” utility is a command line interface to the “uic” module.  
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Figure 4. 4 Generating python code from .ui 

         The code that is generated has an identical structure to that generated by Qt’s “uic” and 

can be used in the same way. 

 

Figure 4. 5 Python code generated from interface design 

4.4  Application Presentation:  

          Our application is a desktop application for comparison between two texts or two 

documents, it uses the Vector Space Models to calculate and compare the similarity. It’s made 

up of few windows which we will describe. 
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4.4.1  Main window:  

 

Figure 4. 6 Main Window of application 

             This window is the first one of our application, from it the user can choose the 

language of the next interfaces and also, the language of the texts he wants to compare or 

documents. If he clicks the English button, the next windows will be completely in English as 

well as for if he chooses French. 

4.4.2  English window: 

 

Figure 4. 7 Texts tab from English Window of application 
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          This is the Second window of our application, it’s divided into two tabs, the first one is 

for texts, and the second one is for uploading documents. 

           The first tab is consisting of two plain text edits which in them the user write or copy 

the texts he want to calculate the similarity between them, and as we said before, this window 

is only for English texts, so if he write a French one, and click compare, a message box will 

show to inform him to insert an English one as in the figure below  

 

Figure 4. 8  Error message from English window 

          Also, from this window, the user can choose which type of similarity he want to use, 

either a Cosine, Jaccard or Dice similarity or all of them, but he has to choose at least one, if 

he didn’t another message box will appear to tell him that he must choose at least one 

similarity as in the figure below 
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Figure 4. 9 Error message from English window 

           So, the user has to enter English texts, and choose one similarity option or more before 

he pushes the button compare. If all the requirements are satisfied, a push up window will 

appear to show the results of the similarities he chooses. 

The Second tab is documents, 
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Figure 4. 10 Documents tab from English window 

             This window is consisting of two buttons to upload documents with “.docx” format or 

“.txt” format. When the user pushes the upload button a dialog window pops up and tell him 

to choose a file, and when he chooses one, the name of this file is going to appear next to the 

button he pushes as in the figure below 

 

Figure 4. 11 Dialog window to choose documents 

             Those documents must be both in English, or a message box will appear to tell him to 

choose a valid English document  
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Figure 4. 12 Error message from Documents tab 

Then the user must at least check one checkbox to choose a similarity or more than one to 

compare between documents  

4.4.3  French window:  

           This window is almost like the English one, when the user clicks the French button 

from the main window, it appears completely in French and the documents or texts mush be 

in French too. 
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Figure 4. 13 Texts tab from French window 

            The first tab consists of two plain text entries where the user writes or copy only 

French texts, otherwise, he got an error to re-enter a French one, also, from this tab the 

user must choose at least one similarity type to calculate, 
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Figure 4. 14 Documents tab from French window 

            From this window the user can choose files or documents to upload, those documents 

must also be in French, and then he has to choose a similarity to calculate 

4.5  Result discussion:  

   

Figure 4. 15 English similarity window 

            This window shows the results of the similarities that user selected from the previous 

English window, if he didn’t choose one of them, the window returns “Not selected”. A same 

window will appear if the user chooses to work with French documents as in the figure below  

 

 Figure 4. 16 French similarity window 
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4.6  Conclusion:  

             In this chapter, we describe and present the programming language and tools we have 

used to implement our model, then we see the application of the model by showing the 

deferent interfaces and windows. 
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GENERAL CONCLUSION  

           In this paper, we have developed and implemented an application for comparing and 

finding the similarity between texts or documents. This paper is significant in many terms, we 

have presented the main features of Vector Space Model and we have implemented these 

features. 

          This work can the backbone of successful text mining operations such as searching and 

information retrieval (IR), text classification, information extraction (IE), document 

clustering, sentiment analysis, machine translation, text summarization, and natural language 

processing (NLP). This work also can be a great help for detecting plagiarism. 

          We will work in the future to improve the tool in order to enlarge its features, such as 

covering multiple file formats like pdf, html and other file formats. Also, we try to implement 

this application to work in multiple platforms as Linux, macOS, and phone operating systems. 

Moreover, we will try to make this work supports and covers other Languages like Arabic 

Language and many others. Also, we will try to develop this application in order to work with 

it online.  

           We are glad to build such tool and we do appreciate all the readers of this report to try 

it out and helps us in order to enhance the current tool.  
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Abstract: 

The study and comparison of documents has proven to be a very important task for the 

detection of plagiarism, the retrieval of new information as well as the categorization of 

documents 

VSMs (Vector Space Models) are one of the most efficient models of the information 

retrieval (IR) system, These models allow to represent complex information in a relatively 

simplistic form, which makes it possible to apply vector computation for text analysis. 

This project aims to develop a text comparison system based on VSMs which allows to 

indicate the correspondence rate (similarity) between two texts or given documents using 

the python language. 

Key Words:  

VSM- Vector Space Models- Document analysis- Plagiarism detection- Python  

  ملخص :

عن السرقات الأدبية واسترجاع المعلومات الجديدة وكذلك  أثبتت دراسة الوثائق ومقارنتها أنها مهمة بالغة الأهمية للكشف

 .تصنيف الوثائق

تسمح هذه النماذج  .(IR) واحدة من أكثر نماذج نظام استرجاع المعلومات كفاءة VSM(Vector Space Models) تعد

  .صوصبتمثيل المعلومات المعقدة في شكل مبسط نسبيًا ، مما يسمح بتطبيق حساب المتجه على تحليل الن

التي يمكن أن تشير إلى معدل التطابق )التشابه( بين  VSMs يهدف هذا المشروع إلى تطوير نظام مقارنة نص يعتمد على

 .python نصين أو مستندات معينة باستخدام لغة

 كلمات مفتاحية :
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 VSM-Vector Space Models -  بايثون  -كشف السرقة الأدبية –تحليل الوثائق 

Résumé :  

L’étude et la comparaison des documents s’est montrée une tâche très importante pour la 

détection de plagiat, la récupération de nouvelles informations ainsi que la catégorisation 

des 

documents 

Les VSM(Vector Space Models) sont l’un des modèles les plus efficaces du système de 

recherche d’informations (IR) (information retrieval, Ces modèles permettent de représenter 

des informations complexes sous une forme relativement simpliste, ce qui permet 

d'appliquer le calcul vectoriel à l'analyse de textes. 

Ce projet vise à développer un système de comparaison de textes basés sur les VSM et qui 

permet d’indiquer le taux de correspondance (similarité) entre deux textes ou documents 

donnés en utilisant la langages python. 

Mots clés : 

VSM -Vector Space Models-  Analyse des documents – détection de plagiat- Python 

  

 


