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Abstract

Computer vision is a sub field of artificial intelligence (AI) that offers the computers
and systems the ability to extract meaningful information from digital images and videos,
this way computers can take decisions or perform actions based on that information.
Computers now can observe and see as if they have eyes.

Stereoscopy, also called stereo imaging, creates the illusion of three-dimensional depth
from given two-dimensional images. The human vision is a great example of stereoscopy,
the eyes perform a visual information gathering, they send this last one to the brain for
processing, the brain reconstructs the real 3D scene and concludes several information
from it.

Three-dimensional reconstruction is the process of obtaining a 3D representation of an
object or a scene starting from a collection of 2D images.

The goal of this work is to build a system that imitates the human visual system by
taking images for a given object and provides a 3D representation for this object.

Keywords: Computer vision, Stereoscopy, 3D reconstruction.
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Résumé

La vision par ordinateur est un sous-domaine de l’intelligence artificielle (IA) qui offre
aux ordinateurs et aux systèmes la capacité d’extraire des informations significatives à
partir d’images et de vidéos numériques, de sorte que les ordinateurs peuvent prendre des
décisions ou exécuter des actions basées sur ces informations. Les ordinateurs peuvent
maintenant observer et voir comme s’ils avaient des yeux.

La stéréoscopie, aussi appelée imagerie stéréo, crée l’illusion d’une profondeur tridimen-
sionnelle à partir d’images bidimensionnelles données. La vision humaine est un excellent
exemple de stéréoscopie, les yeux effectuent une collecte d’informations visuelles, ils les
envoient au cerveau pour traitement, le cerveau reconstruit la scène 3D réelle et en conclut
plusieurs informations.

La reconstruction tridimensionnelle consiste à obtenir une représentation 3D d’un objet
ou d’une scène à partir d’une collection d’images 2D.

Le but de ce travail est de construire un système qui imite le système visuel humain
en prenant des images pour un objet donné et fournit une représentation 3D pour cet objet.

Mots Clés: Vision par ordinateur, Stéréoscopie, Reconstruction tridimensionnelle.
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ملخص

معلومات اسٕتخراج علي القدرة الانٔظمة و للحواسيب تقدم التي الإصطناعي الذكاء فروع من فرع هي الحاسوبية الرؤية
على بناءا عمليات تنفيذ اؤ قرارات اتٕخاذ الحواسيب تستطيع الطريقة بهذه الفيديو، مقاطع و الرقمية الصور من معنى ذات

عيون. عندها لو كما الرؤية الحواسيب تستطيع الانٓ المعلومات. هاته

على رائع مثال هو الإنسان بصر الابٔعاد. ثتائية صور من الابٔعاد الثلاثي العمق يشكل المجسم، التصوير اؤ التجسيم
الثلاثي المشهد ببناء يقوم العقل للمعالجة، العقل الٕى ترسلها ثم البصرية المعلومات جمع عملية تنفذ العيون التجسيم،

منه. معلومات عدة يستنتج و الحقيقي الابٔعاد

الصور من مجموعة من انٕطلاقا مشهد اؤ فيزيائي لشيء الابٔعاد ثلاثي تمثيل ايٕجاد عملية هو الابٔعاد الثلاثي البناء
الابٔعاد. ثنائية

تمثيل تقديم و فيزيائي لشيء صور اخٔذ طريق عن للإنسان البصري النظام يقلد نظام بناء هو العمل هذا من الهدف
الشيء. لهذا الابٔعاد ثلاثي

الابٔعاد. الثلاثي البناء التجسيم، الحاسوبية، الرؤية المفتاحية: الكلمات
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Introduction
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1.1 Context
One of the main, prominent and interesting fields in the artificial intelligence (AI)

particularly and computer science generally, is computer vision (CV) that defines how
computers can get high-level understanding from images or videos.

Computer vision is the transformation of data from a still or video camera into either
a decision or a new representation. All such transformations are done in order to achieve
some particular goal [25]. The idea behind some of CV techniques is about simulating the
human visual system and perform its tasks. Computer vision systems can be classified into
two categories: 2D and 3D systems. 2D systems are about processing two-dimensional
images that contain only X and Y as coordinates. In the other hand, 3D systems are
used to process three dimensional images that have an extra coordinate called the depth
Z which leads us to the stereoscopy. Stereoscopy can be defined as the production of
illusion of depth in a flat image by the presentation of slight differences in two images
taken by the two left and right eyes, this is what a stereoscopic system actually does.

The 3D reconstruction of a scene with the use of a stereoscopic system is a core topic
in CV, most of these systems rely on the triangulation method which requires a complete
knowledge of the cameras, like their relative positions and orientations as well as their
internal parameters like the optical center, skew and the focal length. Moreover, in order to
perform this triangulation process, one needs ways of solving the correspondence problem,
i.e. finding the point in the second image that corresponds to a specific point in the first
image, or vice versa [32]. Generally, 3D reconstruction based on passive triangulation
methods requires point correspondences among various viewpoints [29]

Figure 1.1: 3D reconstruction applications

Stereoscopic 3D reconstruction is the process that cares about the creation of the 3D
shape of an object proceeding from stereo pair of images [18]. Stereo images are captured
in the same way the human eyes capture scenes and can provide depth information, just
as human eyes provide perception about depth [18]. The term depth perception refers to
the ability of any entity, regardless of whether it is a biological organism or a man made
system, to determine how far away the objects which surround it are, not necessarily in
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absolute terms or with great precision, but at least the capability to determine which of
any two nearby objects is closer. If the resolution of the depth perception capability is
sufficiently high, it suffices to allow perception of the shapes of surrounding objects [35].

The idea behind using more than one viewpoint is that triangulation can’t be done from
one single view, it needs two images taken from two viewpoints because when we project
a 3D object in a an image, we are projecting it from a 3D space to 2D space, this is called
the planar projection, and due to this kind of projection, we lose depth information and
we can’t recover it unless we have at least one other view so that we can triangulate a 3D
point. We can make a little experiment by trying to close one of our eyes and then rapidly
close the other one while opening the first one, we will see that objects that are close to
you will appear to jump a significant distance while objects further away will move very
little, that is the key point.

1.2 Problem statement
With the increased use of computer vision in lot of areas such as the industry and

manufacturing area, the stereo-vision based systems in the 3D reconstruction context
made a huge jump by enabling a significant reduction in production time and cost with
less efforts. 3D object model can be reconstructed automatically using active and passive
methods, structured light and laser range scanning belong to active methods, these meth-
ods demand special and expensive equipment unlike the passive methods which require
cheep equipment comparing to the active ones. An example of passive methods which we
are going to use is image-based methods, they depend on stereo image pairs, a 3D model
will be reconstructed for each of these pairs using stereo matching algorithms. Creating
3D models with the help of some computer software and produce it to be a real object
is not that hard because most of the important tasks will be managed and handled by
the modeler and bringing the object to life is not a big deal after we make an accurate
design and ship it toward production, but, the reverse process is not that easy, extracting
the 3D shape from a real object and turning it to a 3D model can be quite difficult and
challenging due to some problems like the correspondence problem which we will discuss
later.

1.3 Goals
This project aims to build an efficient binocular stereo vision-based 3D reconstruction

system to imitate the human visual system by digitally capturing the shape of a given
physical object. The system will generate a 3D model starting from pairs of stereo images.
The images will be taken simultaneously, each pair of them will be processed in order to
extract depth information to be converted to a point cloud in the end. Each produced
point cloud will be merged to one dense point cloud which presents our final object 3D
model.

3



1.4 Thesis outline
This thesis is structured as follows:

The first chapter is an introduction which describes the main problematic; starting
with a brief section that presents the context in order to get an overview about the
project and provide an introduction to the problem statement section that explains
the problematic we encounter. After getting an idea about the problem we face, the goal
section gives an overview about the solution of our main problematic by defining the point
from this work. The second chapter ”State of the art” starts with the statement of the
problem being resolved and discusses the state-of-the-art methods as well as the traditional
methods in the context of 3D reconstruction. The third chapter ”Architecture and
design” is where we described our system in depth by exploring its architecture through
multiple stages. The last chapter ”Implementation and results” is about declaring
which tools, programming languages and libraries that we have used in order to build
this project, also, there is the evaluation section in which we discussed and criticized the
results that we have reached.

Finally, we concluded this work in the general conclusion by presenting our prospects
and future works.

4



Chapter 2

State of the art

5



State of the art

2.1 Problem statement
The capacity to see with both eyes in comparable but somewhat different ways is

referred to as stereoscopic vision. It enables humans to evaluate distance, allowing them
to acquire real depth perception. The capacity of humans to see the world through
stereoscopic vision has historically provided them a considerable edge over other beings
and animals in the wild that do not possess this capability. This capability has given a
new insights on the 3D reconstruction field.

Tridimensional stereoscopic reconstruction is about estimating the 3D geometry and
structure of objects and scenes from a stereo view, which means a pair of image. This
approach is used widely in many applications such as scene understanding, 3D modeling
and industrial control. Recovering the lost dimension from 2D images made a challenge
for the human being.

Recovering the lost dimension is known as depth perception, most of stereoscopic sys-
tems use the triangulation method to do the perception process, in order the get a 3D
point X of an object or a scene, we triangulate it proceeding from two points C1 and C2
in which we will obtain two direction vectors L1 and L2, the rays from the two points
C1 and C2 through the point X as shown in the image below.

Figure 2.1: Locating a 3D point (X), at an unknown depth, with two known 3D points
(C1 and C2) and direction vectors (L1 and L2) – Triangulation [27].

Triangulation

Triangulation depends on the Epipolar Geometry that led to solve the correspon-
dence problem, basically, this problem appears when we try to find the corresponding
pixel in the right image starting from some pixel in the left image, this search operation
can be computationally very expensive and can lead to false positives.

Epipolar Geometry

When two cameras observe a scene, there are a variety of geometric linkages between
the 3D points and their projections onto the 2D images, this is explained by the Epipolar

6



State of the art

Geometry that leads to solve the correspondence problem so that we can perform the
triangulation process, we will discuss all of this in more detail in the next chapter.

2.2 Existing approaches
2.2.1 Deep learning-based approaches

Since 2015, image-based 3D reconstruction using deep learning techniques has attracted
increasing interest and demonstrated an impressive performance.

Deep learning

Deep learning is an emerging area and a subclass of machine learning (ML). It comprises
multiple hidden layers of artificial neural networks [38]. It has many architectures such as

• Convolutional neural networks (CNNs)

• Recurrent neural networks (RNNs)

• Graph neural networks (GNNs)

• Autoencoders (Aes)

These architectures have been used in fields like natural language processing(NLP), speech
recognition, bioinformatics and computer vision.

Artificial neural network

Artificial neural networks (ANNs) are computer neural networks that seek to imitate the
decision process in networks of nerve cells (neurons) in the biological (human or animal)
central nervous system in a gross manner, as their name implies. They were introduced
by the neurophysiologist Warren McCulloch and the mathematician Walter Pitt in
their paper: ” A logical calculus of the ideas immanent in nervous activity”, in 1943 [30].

Neuron

A neuron is a nerve cell, these cells communicate using some links called synapses.

Figure 2.2: Two connected biological neurons [13]
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State of the art

Biological neurons are fired based on the intensity of the entering signals. This process
can be simulated by this activation function :

y = σ(
∑

wixi) (2.1)

Where y defines the output, σ is the activation function and wi is the weight of input
xi

Activation function

Activation functions are functions used in neural networks NNs to compute the weighted
sum of inputs and biases, which decides if a neuron can be fired or not [34]. Activation
function has many types:

• Sigmoind function

• Hyperbolic tangent function (Tanh)

• Rectified Linear Unit function (ReLu)

• Leaky ReLU (LReLU)

• Softmax Activation Function

The image below describes a neuron in which the activation function takes the sum of
inputs as z and outputs a value a.

Figure 2.3: The structure of an artificial neuron [31]

Deep neural network

A deep neural network can take a single image, multiple images or a video stream
as input. Using one single image in 3D reconstruction is extremely difficult due to the
ambiguities unlike the video stream where we can go across all the frames to ensure the
smoothness and the consistency of the reconstruction [19].

8



State of the art

3D reconstruction based on single/multiple images

The 3D reconstruction based on one single image using deep learning techniques encoun-
ters multiple challenges, which slows down this approach towards its maturity. Generally,
the 3D reconstruction from a single image faces the six following challenges:

• Uncertainty reconstruction of objects

• Shape complexity reconstruction of objects

• Reconstruction of fine-grained objects

• Memory requirements and calculation time

• Training datasets

• Selectivity of 3D shape representations

The output can be represented depending on the network architecture, it also decides
how the quality and the efficiency will be. Some of representation methods can be de-
scribed as:

• Volumetric representations, very expensive in terms of memory requirements, exten-
sively used in the early stage deep learning-based 3D reconstruction techniques [19].

• Surface-based representations, introduced in many articles as meshes and point
clouds.

• Intermediation, “while some 3D reconstruction algorithms predict the 3D geom-
etry of an object from RGB images directly, others decompose the problem into
sequential steps, each step predicts an intermediate representation“ [19].

Dataset

Multiple popular datasets have been published such as ShapeNet, ModelNet, IKEA,
Pix3D and PASCAL 3D+, each dataset has its own characteristics. For example, if we
take the ModelNet dataset, we find that it has 662 object categories and covers about
127,915 CAD models.

Dataset Data Type Classes Models/Images
ShapeNet Synthetic 55 51,300/-
ModelNet Synthetic 662 127,915/-

IKEA Real 6 219/759
Pix3D Real 9 395/10,069

PASCAL3D+ Real 12 3000+/-

Table 2.1: Popular datasets for 3D Reconstruction [16]
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State of the art

Figure 2.4: Some examples of the ModelNet dataset [33]

Convolutional neural network

Basically, CNNs and RNNs are the most used NNs in deep learning-based 3D recon-
struction. Convolutional neural network is a class of ANNs, consists of input layer, output
layer, lot of hidden layers and million of parameters that have the ability to learn complex
objects and patterns. It uses a special technique called convolution.

Figure 2.5: Convolutional neural network [11]

Convolution

Convolution is the process of combining two functions to produce the output of the
other function. The input image is convolutioned with the application of filters in CNNs,
resulting in a feature map.
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Figure 2.6: Convolution of an image with an edge detector kernel, nvidia developer.

Convolution happens in the CNN’s convolution layer following this equation:

InputImage ∗ FeatureDetector = FeatureMap (2.2)

Limitations

As much power as CNN has, it has limitations, several studies have shown that CNNs
trained on ImageNet and other popular datasets fail to detect objects when they see them
under different lighting conditions and from new angles.

Recurrent neural network

A recurrent neural network is also a neural network which uses sequential data or time
series data. RNN is different from CNN, it is distinguished by its “memory” as it take
information from prior inputs to influence the current input and output.

Figure 2.7: Basic architecture of a Recurrent Neural Network [7].

The above figure shows multiple RNN cells that take different inputs at different time
steps, this allows RNNs to calculate the error for each step by using the Backpropaga-
tion through time (BPTT).

Limitations

Like CNNs, RNNs also have their limitations, they can not learn long term dependencies
in addition to the problem of vanishing/exploding gradients. These issues led to the new
LSTM model.
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Long Short-Term Memory network

Long Short-Term Memory networks, which called ”LSTMs” are implementations of
RNN which can be effectively trained and good at identifying long range dependencies.
The main difference between RNNs and LSTMs is that they differ in the structure of the
repeating model in which RNNs overwrite the hidden state and LSTMs add to the hidden
state.

Figure 2.8: Structure of the LSTM cell and equations that describe the gates of an LSTM
cell [39].

Gated recurrent unit

There is another architecture which called Gated Recurrent Unit (GRU). Basically,
GRU works with two parameters called update gate and reset gate, the first one controls
the amount of the past information still want to remember and the second one decides
how much old states will be passed in the future.

Figure 2.9: Structure of the cell in each of RNN, LSTM and GRU [9]
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2.2.2 Traditional approaches
Shape from shading

Shape from shading or shading-based surface reconstruction, introduced by Horn in
1970. It is the process of computing the three-dimensional shape of a surface starting
from the brightness of one black and white image of the given surface [36].

Figure 2.10: (a) A real face image. (b) Surface recovered from (a) [22]

Shape from shading technique depends on given assumptions about the lighting condi-
tions and surface reflectance properties. Many efforts have been dedicated to solve this
problem, some of these efforts have led to the partial differential equation(PDE).

Limitations

Shape from shading technique has been improved but not enough the reach a maturity
that enables it to get accurate results.

Shape from silhouette

Shape from silhouette, first introduced by Baumgart in 1974 in his PhD thesis, it is a
technique that uses a given silhoutte images to estimate the shape of an object. After
Baumgart’s introduction, multiple variations of the shape from silhouette paradigm have
been proposed [15]. Some of these variations are:

• Representing the reconstructed shape by using volumetric descriptions, proposed
by Aggarwal et al.

• Using octree data structure to speed up the SFS, suggested by Potmesil, Noborio
et al and Ahuja et al.

• Shanmukh and Pujari proposition for taking silhouette images.

• Szeliski’s non-invasive 3D digitizer that uses a single camera and a turntable.

The output of the shape from silhouette algorithm is called Visual Hull(VH), it has
been used for a decade by the researchers to obtain the estimated shape following the
shape from silhouette principle [15].

13



State of the art

Figure 2.11: (a) visual cone obtained by back projection of silhouette image; (b) visual
hull obtained by intersection of two visual cones; and, (c) 3D shape acquired by bounding
geometry of resultant visual hull with multiple visual cones [28]

Structure from motion

Structure from motion(SFM) is a technique that uses a sequence of 2D images taken
from different places to obtain the 3D structure of a scene or an object, it has a lot of
similarities with our system, for example, SFM uses the triangulation method to calculate
the relative 3D positions (x,y,z) of objects. SFM technique depends on matching features
instead of matching pixels, we use feature extractors such as SURF, SIFT and ORB.

Figure 2.12: 3D point from a scene and it’s corresponding 2D point on each image
plane [28]
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The scale-invariant feature transform (SIFT) is an algorithm that detect features in
images,it was published by David Lowe in 1999. SIFT allows corresponding features to
be matched even with large variations in scale and viewpoint and under conditions of
partial occlusion and changing illumination.

Limitations

Since SFM depends on matching features instead of pixels, this can be considered as
limitation, so it can not be used in applications that depend on accurate 3D reconstruction.

2.3 Proposed system description
Our system is basically a stereo rig in which two cameras are separated, horizontally

aligned and well fixed, acting as human eyes. These cameras will be calibrated so that
we obtain the intrinsic and the extrinsic parameters in which they will be used to rectify
images by removing the lens distortion. Intrinsic parameters are the focal length, skew,
distortion coefficients and the image center and for the extrinsic parameters, they can be
defined as the camera position and its orientation. NASA uses a similar system on its
new Mars 2020 Rover.

Figure 2.13: The NASA Perseverance rover Mast Camera Zoom [21]

The Mastcam-Z system aboard the NASA Perseverance rover consists of a pair of
zoomable, focusable, multi-spectral, and color charge-coupled device (CCD) cameras, as
well as accompanying electronics and two calibration targets, installed on top of a 1.7 m
Remote Sensing Mast. The cameras use identical optical assemblies with focal lengths
ranging from 26 mm (25.5�×19.1� FOV) to 110 mm (6.2�×4.2� FOV). Data will be collected
at pixel scales of 148-540 m at a range of 2 m and 7.4-27 cm at a distance of 1 km. With a
stereo baseline of 24.3±0.1 cm and a toe-in angle of 1.17±0.03�, the cameras are positioned
atop the rover’s mast (per camera) [21].

Our system’s cameras take photos simultaneously so in each iteration, we will obtain
two images that are almost identical except they were taken from two different points.
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Each pixel in the left image will be mapped to some pixel in the right image, after the
mapping of pixels, now we have a disparity map which is the distance of a pixel that has
moved between the left and the right image. The disparity map will be converted to a
point cloud, the process from taking images to the point cloud part will be repeated as
much as we cover all the scene or the given object and as a final step, all the produced
point clouds will be merged to one dense point cloud that represents our final 3D model.
The system can be controlled from a mobile device that establishes a socket connection,
which enables us to send commands from distance.

Figure 2.14: Similar setup to our system

2.4 Goals
The 3D reconstruction of scenes/objects can be described as taking as input a pair

of 2D stereo photos and producing as output a group of 3D points constructed using
those photos, this output is called a point cloud which is the representation of the 3D-
reconstructed scene/object, this process called point cloud registration.

One of the main goals that we focus on reaching is the ability of our system to convert
physical objects into precise digital models, this enables us to obtain our object’s shape and
geometries quickly and accurately. This system can be used extensively in manufacturing,
quality inspection, analysis...etc.

2.5 Conclusion
In this chapter, we started with an introduction about the problem to be processed,

also, we have gone through multiple approaches in the context of 3D reconstruction, this
led us to discover some techniques and methods as well as their limitations, following by
a brief description of our proposed system and its goals to be achieved.
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Architecture and design
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3.1 Introduction
Our brains usually get almost identical pictures of a scene taken from two neighboring

places at the same horizontal level because of the way our eyes are positioned and operated.
The relative locations of two objects in the two eyes will change if they are separated in
depth from the viewer. Our brains are capable of measuring this difference and estimating
depth utilizing it [8].

Depth perception has been one of the important tasks in computer vision systems. A
stereo camera system is the most often used system for obtaining depth information by
taking images as input. Stereo correspondence is the process of matching each point in the
left image by its corresponding point in the right image which outputs what we called a
disparity map, this process is quite challenging and consumes a lot of resources, however,
this heavy search can be reduced to one dimensional search by applying an accurate stereo
rectification which handles the lens distortions in the images.

Mapping a point in the left image to its corresponding point in the right images is
called the point correspondence, this needs a good camera calibration that takes the
responsibility of finding the intrinsic parameters and the extrinsic ones for the cameras,
so the position of each camera is known. The point correspondence has been considered
as a problem because the point that has to be matched should be distinguishable from
the pixels around it, this led to several constraints that have been imposed in order to
minimise the false correspondences in the image pair. In 1979, Marr and Poggio imposed
the uniqueness constraint which requires that a pixel from one image cannot match to
more than one pixel in the other image [17]. The problem of finding the corresponding
point in the presence of occluded regions made a big challenge, however, another constraint
was imposed by Baker and Binford in 1981, the ordering constraint which states that the
pixels ordering is maintained throughout the images, this constraint can be violated if an
object in the scene is very close to the camera more than the background. Marr and Poggio
introduced another constraint which called the continuity constraint, ”the disparity map
should vary smoothly almost everywhere in the image” [17].

Some of stereo vision applications require real-time 3D reconstruction, there is always
a trade-off between accuracy and speed when it comes to disparity maps, especially when
the images have big size or the disparity range is long, using powerful machines that have
large computational resources may tackle this problem, even the point clouds have big
weight in the storage, storing and processing them increase the need for such powerful
machines that have a parallelism and pipelining architectures.

3.2 System architecture description
Our system is a binocular stereo vision system, consisting of a pair of cameras rigidly

fixed with respect to each other, these cameras take photos simultaneously, by following
a pipeline, we can obtain a 3D model from these photos. The image below describes the
followed pipeline, each step of this pipeline will be explored in depth.
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Figure 3.1: Pipeline

3.2.1 Camera calibration
When it is used as a visual sensor, a camera is an essential component of a variety of

domains, including robotics, surveillance, industrial automation, space exploration...etc.

Camera calibration is the process of estimating some parameters that we need to deter-
mine an accurate relationship between a 3D point in the real world and its corresponding
pixel in the image captured by that calibrated camera. Those parameters are the intrinsic
parameters and extrinsic parameters.

Intrinsic parameters

Also known as internal parameters , they are the camera’s focal length, optical center,
and distortion coefficients of the lens...etc. These parameters are defined by a 3×3 upper
triangular matrix K:

K =

fx γ cx
0 fy cy
0 0 1


fx, fy are the x and y focal lengths, usually they are the same.
cx, cy define the coordinates of the optical center.
γ is the skew between the axes, it is usually 0.

The Focal length is one of the basic characteristics of a photographic lens, we represent
it in millimeters (mm), but it is not the actual real length of a lens. It is determined when
the lens is focused at infinity [2]. It controls the angle of view, i.e, how much of the scene
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will be captured, the zoom, i.e, how large individual elements will be. The shorter the
focal length, the wider the angle of view and the lower the zoom, and vice versa.

Figure 3.2: The same scene with different focal lengths [2]

The Optical center is a point on the principal axis of the lens, such that a ray of light
passing through it goes without any deviation.

The Distortion coefficients describe mathematically the distortions in the image, we
will explore them in depth later.

Figure 3.3: Focal length, angle of view and the optical center [10]

Extrinsic parameters

Sometimes they are called by external parameters, they define the camera’s rotation and
translation, with respect to a world coordinate system. Generally, we define the external
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parameters by one matrix called the extrinsic matrix that combines a 3×3 rotation matrix
R and a 3×1 translation vector t.

Extrinsic parameters enable us to find the 3D point projection onto the image plane
by transforming the point from the world coordinate system to the camera coordinate
system.

Figure 3.4: World coordinate system and camera coordinate system [12]

In order to project the 3D point from the world coordinate system onto the image plane,
we use the intrinsic parameters. The equations below elaborates the relation between a
3D point (Xw,Yw,Zw) in the world coordinate system and its projection (u,v).

u’
v’
z’

 = P


Xw

Yw

Zw

1

 (3.1)

u =
u’
w’ (3.2)

v =
v’
w’ (3.3)

P refers to the projection matrix, it is a 3×4 matrix that consists of the intrinsic
matrix K and the extrinsic matrix [R|t].

P = K × [R|t] (3.4)
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Figure 3.5: World coordinate system, camera coordinate system and the image coordinate
system(P is a 3D point here) [12]

Calibration methods

Many methods have been imposed to do the calibration process such as the calibration
using a pattern. It can be done by capturing multiple images of a known dimensions
pattern from different view points. One of the widely used methods that belongs to the
pattern-based calibration is the calibration using a checkerboard, it is easy because the
checkerboard has squares and these squares have corners that have sharp gradients in two
directions and that is what makes them ideal to be localized robustly.

Figure 3.6: Checkerboard pattern
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Calibration process

The calibration process is illustrated by the flowchart below.

Figure 3.7: Calibration process flowchart

The first step is to define real world coordinates using a checkerboard pattern in which
the size is known and the printing quality is good, also it would be recommended to not
fitting the checkerboard to the page. The 3D points are defined by the squares corners of
the checkerboard.

The second step is to capture images for the checkerboard from different viewpoints, to
achieve this, we can glue the checkerboard on a flat and solid object, our printed pattern
must be completely flat. As minimum, we capture at least 20 images, as we said before,
these image must be taken from different angles and different distances.

Figure 3.8: Checkerboard from different viewpoints [24]
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Since we have taken multiple images for the checkerboard, it is time to find the pixel
coordinates (u,v) for each 3D point in different images. As we know the 3D location of the
checkerboard corners in the world coordinate system, now we need the 2D pixel locations
of these corners in the images. findChessboardCorners is an OpenCV built-in function
that attempts to find whether the input image is a view of the chessboard pattern and
locate the internal chessboard corners. The detected points are not completely accurate,
the function calls cornerSubPix to determine the accurate positions [4]. The function
returns the coordinates of the corners by the taking the following arguments as input:

• image: Source chessboard view. It must be an 8-bit grayscale or color image.

• patternSize: Number of inner corners per a chessboard row and column.

• flags: Various operation flags.

A Python example for this function would be like this:

1 retval, corners = cv2.findChessboardCorners(image, patternSize, flags)

where corners is the output array of detected corners.

Now, in order to get the camera parameters, it remains one last step, which is passing
the 3D point in world coordinate system and their 2D location in all the images as input
to the OpenCV built-in function calibrateCamera. A python example for this function
would be like this:

1 retval, cameraMatrix, distCoeffs, rvecs, tvecs =
cv2.calibrateCamera(objectPoints, imagePoints, imageSize)↪→

Inputs and outputs are explained in the following

• objectPoints: A vector of vectors of 3D points.

• imagePoints: A vector of vectors of the 2D image points.

• imageSize: Image size.

• cameraMatrix: Intrinsic camera matrix.

• distCoeffs: Lens distortion coefficients.

• rvecs: Rotation specified as a 3×1 vector. The direction of the vector specifies the
axis of rotation and the magnitude of the vector specifies the angle of rotation.

• tvecs: 3×1 Translation vector.
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3.2.2 Stereo calibration
After calibrating each camera individually, we need to perform a stereo calibration in

order to find the transformation between the stereo camera pair,the essential matrix, and
the fundamental matrix. If the poses of an item relative to the first and second cameras
are computed, (R1,T1) and (R2,T2), respectively, for a stereo camera where the relative
position and orientation between the two cameras are fixed, then those poses definitely
relate to each other. It is possible to compute (R2,T2) when (R1,T1) is given and
the relative position and orientation (R,T) of the two cameras is known [3].(R,T) is
computed such that:

R2 = RR1 (3.5)

T2 = RT1 + T (3.6)
Then, we can calculate the coordinate representation of a 3D point for the second

camera’s coordinate system when given the point’s coordinate representation in the first
camera’s coordinate system: 

X2

Y2

Z2

1

 =

[
R T
0 1

]
X1

Y1

Z1

1

 (3.7)

And the essential matrix E, which is a matrix that relates the corresponding points
in the stereo images and it can be used only in relation to calibrated cameras for deter-
mining the relative position and orientation between these cameras and the 3D position
of corresponding image points. It can be computed like this:

E =

 0 −T2 T1

T2 0 −T0

−T1 T0 0

R (3.8)

Ti are components of the translation vector:

T : T = [T0, T1, T2]T (3.9)

The fundamental matrix F which is similar to the essential matrix but it deals with
uncalibrated cameras and has different number of parameters [1]:

F = K−1
1 ·E·K−T

2 (3.10)

where K1 and K2 are the camera matrices for the two cameras.

The OpenCV’s built-in function stereoCalibrate does the previous computation, it
minimizes the total re-projection error for all the point in each views from both cameras
and returns a value as the final re-projection error [3]. The function can also perform
calibration for each of the two cameras but it is recommended to calibrate each camera
individually due to the high dimensionality of the parameter space and noise in the input
data which can lead to inaccurate solution. A Python implementation for this function
would be like this:
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1 retVal, cameraMatrixL, distCoeffsL, cameraMatrixR,
2 distCoeffsR, R, T, E, F = cv2.stereoCalibrate(objectPoints,
3 imagePointsL,
4 imagePointsR,
5 cameraMatrixL,
6 distCoeffsL,
7 cameraMatrixR,
8 distCoeffsR,
9 imageSize,

10 criteria,
11 flags)

Inputs and outputs are defined in the following:

• objectPoints: Vector of vectors of the calibration pattern points.

• imagePointsL: Vector of vectors of the projections of the calibration pattern
points, observed by the left camera. .

• imagePointsR: Vector of vectors of the projections of the calibration pattern
points, observed by the right camera.

• cameraMatrixL: Input/output camera intrinsic matrix for the left camera.

• distCoeffsL: Input/output vector of distortion coefficients.

• cameraMatrixR: Input/output camera intrinsic matrix for the right camera.

• distCoeffsR: Input/output lens distortion coefficients for the second camera.

• imageSize: Size of the image used only to initialize the camera intrinsic matrices.

• R: Output rotation matrix.

• T: Output translation vector.

• E: Output essential matrix.

• F: Output fundamental matrix.

• criteria: Termination criteria for the iterative optimization algorithm.

• flags: Various operation flags.

3.2.3 Stereo rectification
Stereo rectification is about using the camera parameters and both rotation and trans-

lation between the cameras to make the images planes of the cameras in the same plane.
Before we dive deeper in the stereo rectification process, we should understand what lens
distortion means.
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Generally, there are two types of distortions: the perspective and the optical. Both
change the image formation, from slight to noticeable deformation. Optical distortion is
the one that concerns us because it is related to how the lens is designed. Basically, there
are two major types of distortion:

• Radial distortion

• Tangential distortion

Radial distortion happens when light rays bend more at the lens’s borders than at the
lens’s optical center. The smaller the lens, the higher the distortion. There are two types
of radial distortion:

• Barrel distortion: Positive radial displacement.

• Pincushion distortion: Negative radial displacement.

Figure 3.9: Without distortion, barrel distortion, and pincushion distortion.

Tangential distortion occurs when the lens and the image plane are not parallel. As
we discussed before, lens distortion is represented mathematically by some coefficients
called the distortion coefficients. The distortion coefficients returned from the camera
calibration process are represented by values from K1 to K6 as radial distortion and
P1,P2 as tangential distortion.

Figure 3.10: Tangential distortion results when the lens is not fully parallel to the image
plane [25]
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Stereo pair rectification is a transformation of each image in which the epipolar lines
become parallel to one of the image axes, this process minimizes the search for the corre-
sponding points to 1D search.

Figure 3.11: (A) Epipolar geometry, (B) Epipolar geometry rectified.

Rectification algorithm can be summarized in these basic steps:

• Rotate the left camera to make its image plane parallel to the baseline of the system.

• Apply the same rotation to the right camera to recover the original geometry.

• Rotate the right camera so that its image plane will be parallel to the baseline.

• Adjust the scale in both the camera reference frames.

The OpenCV’s built-in function stereoRectify computes the rotation matrices for each
camera, it takes as input the matrices calculated by stereoCalibrate and it outputs two
rotation matrices as well as two projection matrices in the new coordinates. The stereo
rig can take two positions:

• Horizontal position: The left and the right cameras views are shifted along the x-
axis relatively to each other, which makes the corresponding epipolar lines horizontal
in the left and the right cameras and they have the same y-coordinate in the rectified
images. the two projection matrices P1 and P2 look like the following:

P1 =

f 0 cx1 0
0 f cy 0
0 0 1 0

 (3.11)
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P2 =

f 0 cx2 Tx ∗ f
0 f cy 0
0 0 1 0

 (3.12)

Tx is the horizontal shift between the cameras [3].

• Vertical position: The left and the right cameras views are shifted alongside the
y-axis relatively to each other. The epipolar lines in the rectified images have the
same x-coordinate. The two projection matrices P1 and P2 look like:

P1 =

f 0 cx 0
0 f cy1 0
0 0 1 0

 (3.13)

P2 =

f 0 cx 0
0 f cy2 Ty ∗ f
0 0 1 0

 (3.14)

Ty is the vertical shift between the cameras [3].

The first three columns of P1 and P2 are the new rectified camera matrices that will
be passed with R1 and R2 to initUndistortRectifyMap function that initializes the
rectification map for each camera.

Figure 3.12: Distortion removing and rectification

29



Architecture and design

A Python example for stereoRectify function would be like this:

1 R1, R2, P1, P2, Q, validPixROI1,validPixROI2 =
2 cv2.stereoRectify(cameraMatrixLeft,
3 distCoeffsLeft,
4 cameraMatrixRight,
5 distCoeffsRight,
6 imageSize,
7 R,
8 T,
9 alpha,

10 flags)

where,

• R1: Output 3x3 rectification transform (rotation matrix) for the first camera. This
matrix brings points given in the unrectified first camera’s coordinate system to
points in the rectified first camera’s coordinate system. In more technical terms, it
performs a change of basis from the unrectified first camera’s coordinate system to
the rectified first camera’s coordinate system.

• R2: Output 3x3 rectification transform (rotation matrix) for the second camera.
This matrix brings points given in the unrectified second camera’s coordinate system
to points in the rectified second camera’s coordinate system. In more technical
terms, it performs a change of basis from the unrectified second camera’s coordinate
system to the rectified second camera’s coordinate system.

• P1: Output 3x4 projection matrix in the new (rectified) coordinate systems for the
first camera, i.e. it projects points given in the rectified first camera coordinate
system into the rectified first camera’s image.

• P2: Output 3x4 projection matrix in the new (rectified) coordinate systems for the
second camera, i.e. it projects points given in the rectified first camera coordinate
system into the rectified second camera’s image.

• Q: Output 4×4 disparity-to-depth mapping matrix

• alpha: Free scaling parameter. alpha=0 means that the rectified images are zoomed
and shifted so that only valid pixels are visible (no black areas after rectification).
alpha=1 means that the rectified image is decimated and shifted so that all the pixels
from the original images from the cameras are retained in the rectified images (no
source image pixels are lost). Any intermediate value yields an intermediate result
between those two extreme cases.

• validPixROI1: Optional output rectangles inside the rectified images where all
the pixels are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they
are likely to be smaller.

• validPixROI2: Optional output rectangles inside the rectified images where all
the pixels are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they
are likely to be smaller.
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The initUndistortRectifyMap function calculates the joint undistortion and rectifi-
cation transformation and represents the result in the form of maps as output for remap.
It computes the corresponding coordinates in the original image for each pixel (u,v) in
the rectified image. A Python example for this function would be like the following:

1 map1, map2 = cv2.initUndistortRectifyMap(cameraMatrix,
2 distCoeffs,
3 Rect,
4 newCameraMatrix,
5 imageSize,
6 flags)

It will be called twice, one for each of the two cameras.

3.2.4 Stereo matching
Stereo matching can be described as one of the core topics in computer vision, perform-

ing stereo matching means recovering the 3D structure of a given scene or object from 2D
images. This topic lies on a lot of interesting areas such as augmented reality, robotics
and autonomous driving. Given a pair of rectified stereo images, stereo matching has
the responsibility of computing the disparity of each pixel in the left image(the reference
image). The disparity is the horizontal shift between a pair of corresponding pixels in the
left and right images. Stereo matching methods can be divided to two major methods,
local methods and global methods. We are interested with the block matching method
which is considered as a local method. Block matching searches one image for the best
corresponding region for a template in the other image, i.e, shifting the template along
the epipolar line in a predefined disparity range.

Figure 3.13: Pixel matching and disparity [37]

OpenCV has two different algorithm implementations for the stereo correspondence/-
matching algorithms, they share common object interface. The first one is the block
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matching BM algorithm which is an effective and fast algorithm, it uses small SADs win-
dows, SAD stands for the sum of absolute difference, it uses them to map points between
the left and right stereo rectified images.

SAD =
∑

|Il(x, y)− Ir(x+ d, y)| (3.15)

The second algorithm is the SGBM, semi-global block matching, it differs from the first
algorithm, this one does the matching at subpixel level and tries to enforce the global
smoothness. BM is faster but not accurate and reliable as SGBM [26].

Since this project requires as much accuracy as possible, we decided to go with the
SGBM algorithm. The following Python code creates an SGBM with several parameters,
these parameters should be tuned repeatedly until we find the best result:

1 minDisparity = 0
2 numDisparities = 64
3 blockSize = 8
4 disp12MaxDiff = 1
5 uniquenessRatio = 10
6 sepeckleWindowSize = 10
7 speckleRange = 8
8

9 sgbm = cv2.StereoSGBM_create(minDisparity = minDisparty,
10 numDisparities = numDisparities,
11 blockSize = blockSize,
12 disp12MaxDiff = disp12MaxDiff,
13 uniquenessRatio = uniquenessRatio,
14 speckleWindowSize = speckleWindowSize,
15 speckleRange = speckleRange)

Where,

• minDisparity: Minimum possible disparity value, normally it is 0.

• numDisparities: Maximum disparity minus minimum disparity, always greater
than 0.

• blockSize: Matched block size, an odd number greater or equal to 1.

• disp12MaxDiff: Maximum allowed difference in the left right disparity check.

• uniquenessRatio: Margin in percentage by which the best (minimum) computed
cost function value should ”win” the second best value to consider the found match
correct. Normally, a value within the 5-15 range is good enough.

• speckleWindowSize: Maximum size of smooth disparity regions to consider their
noise speckles and invalidate.

• speckleRange: Maximum disparity variation within each connected component.
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3.2.5 Disparity map
As we have seen before, the goal of stereo matching is to calculate the disparity map

which is the horizontal shift between a pair of corresponding pixels in the left and right
images.

Figure 3.14: The baseline B, focal length f and the distance z.

The below equation demonstrates how to calculate the disparity between points in the
image plane corresponding to the scene 3D point.

disparity = x− x′ =
Bf

Z
(3.16)

we can derive the depth of all the pixels in some image because the depth of a point
is inversely proportional to the difference in distance of corresponding image points and
their camera centers. A simple example of the disparity map of an image is illustrated in
the image below:

Figure 3.15: Disparity map

Using the SGBM object that we have created, we can compute the disparity map with
this one line Python code:
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1 disparity_map = sgbm.compute(leftImg, rightImg).astype(np.float32)

3.2.6 Point cloud generation
Generating a complete 3D scene is a significant technique for multiple computer vision

applications such as high-precision 3D map reconstruction in autonomous driving and 3D
reconstruction in general [23]. A point cloud is a set of data points in space. In a 3D
coordinates system, these points construct the shape of an object to represent it, each
point has its X, Y and Z coordinates. Point clouds can be used for many purposes such
as creating 3D models for manufactured parts, quality inspection, visualization...etc.

Figure 3.16: Simple Point Cloud

To get the whole given object shape, we need to go around it, this enables us to capture
it fully, each pair of the images will produce a point cloud, all the point clouds will be
merged to one dense point cloud. OpenCV provides a function that transforms a single-
channel disparity map to a three-channel image representing a 3D surface, it takes as input
the disparity map and a 4×4 perspective transformation matrix from stereo rectification.

X
Y
Z
W

 = Q


x
y

disparity(x, y)
z

 (3.17)

The process of merging point clouds together is called the point cloud registration,
multiple algorithms exist for that, one of them is ICP (iterative closest point). The
algorithm takes two point clouds as input, it works as following:
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• For each point in the first point cloud (the source point cloud), it matches the closest
point in the second point cloud.

• It performs an estimation for the combination of rotation and translation using a
root mean square point to point distance metric minimization technique, this leads
to good alignment between each point and its match.

• It transforms the source points using the obtained transformation.

• Re-associating the points, i.e, iterating.

Figure 3.17: Point cloud registration using the ICP algorithm [14]

3.3 Conclusion
In this chapter, we have presented the system in depth, we have given similar setups

like the one the NASA’s Mars 2020 Rover uses, we have gone through different steps from
image gathering to the point cloud generation, each step was explained in detail alongside
with its proper implementation (Python) and mathematical proof.
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Implementation and results
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During the journey of building the system, from the design to the last line of code, we
have used multiple programming languages and several tools to get to this point. In this
chapter, we will introduce these tools and these programming languages, evaluate and
discuss results.

4.1 Tools and programming languages
Programming languages

Figure 4.1: Python

Python, it is an interpreted high-level and general-purpose programming language well
suited to tasks such as cleaning data, interacting with web resources and parsing text [20],
its first appearance was in February 1991 by Guido van Rossum, but he started working on
it in the late 1980s. Python supports multiple programming paradigms such as procedural,
object-oriented(OOP) and functional programming, it dynamically-typed with a garbage
collector. It has many uses in major domains like artificial intelligence and its sub-domains
such as machine learning, deep learning and computer vision using famous libraries such
as Numpy, pandas, Keras, TensorFlow and OpenCV. Also, Python is used widely in web
development as scripting language by web frameworks like Django, Flask, FastApi...etc.
In this project, we have used python as main programming language due to its power and
simplicity.
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Figure 4.2: Java

Java, ”write once, run anywhere”, it is a general-purpose, high-level, class-based, object-
oriented programming language that was originally developed by James Gosling at Sun
Microsystems in 1995, it has been acquired by Oracle later. Latest version of Java is Java
SE 16 which has been released in March 16, 2021. In this project we have used Java for
creating a socket client to integrate it in an Android application which enables us to send
commands to the system and the system will respond according to these commands.

Figure 4.3: Kotlin

Kotlin, it is a statically-typed, cross-platfrom, general-purpose programming language,
designed with full interoperability with Java and more concise syntax. In May 7th, 2019,
Google announced that Kotlin win be the number one programming language for Android.
In this project, we have used Kotlin to create a simple android application that controls
our system from distance and we take the benefit from its interoperability with Java by
integrating the socket code that we have created using Java.

Figure 4.4: Github’s statistics
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Libraries

Figure 4.5: OpenCV

OpenCV (Open Source Computer Vision Library), an open source software library
for computer vision and machine learning [5]. The goal behind building the OpenCV
is to provide a common infrastructure for computer vision applications and to increase
the use of machine perception in the commercial products. It has a lot of both classic
and state-of-the-art computer vision and machine learning algorithms, more than 2500
optimized algorithms for multiple use cases, from the detection and recognizing of faces
and objects to 3D point clouds production from stereo cameras. The library is the heart
of this project, we have relied on it for the whole work.

Figure 4.6: Numpy

Numpy is an open source project created in 2005 that provides numerical computing
ability with Python, it combines the expressive power of array programming alongside
with the performance of C, use the Python’s power that is represented in the readability,
usability and versatility [20]. Numpy was initially developer by students and researchers
to provider a powerful array programming for Python. In this project we have used
Numpy mostly in saving and loading parameters to perform different operations.

Figure 4.7: Open3D

Open3D is an open source library that provides a great support for rapid development
of software that deals with 3D data [40]. It has a highly optimized backend that uses
parallelization techniques, it works on Windows, macOS and Linux.
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Tools

Two IDEs have been used as tools for this project:

• Pycharm is an integrated development environment IDE developed by JetBrains,
dedicated for Python language. Pycharm works on Windows, macOS and linux
with two editions, the community edition and the professional edition. It provides
a wonderful user experience with smart assistance that provides intelligent code
completion and easy project navigation [6].

• Android Studio it is the official IDE for the Android operating system managed
by Google, it was built based on JetBrains’s product Intellij IDEA, it works on
Windows, macOS and Linux. Android Studio was first announced on May 16, 2013
by the Google I/O conference. It comes with a lot of features and support all the
same programming languages of Intellij such as C++, Java and Kotlin and the user
can integrate more languages through extensions.

4.2 Evaluation and discussion
In this section, we present the results of our system, discuss and evaluate them. Our

binocular stereo vision system consists of a pair of webcams rigidly fixed with respect to
each other, these cameras take photos simultaneously for a given object and this leads to
obtain a 3D model from these photos. The image below shows the setup of our system.

Figure 4.8: Our setup

This kind of projects needs a lot of experiments to reach a respectful results, the camera
calibration is a one time operation, which means that it will be performed only once, it
consumes time and efforts, taking a lot of checkerboard pattern photos is a good prac-
tise, we need to make sure that the photos are taken from different angles and different
distances while we have a good lighting conditions. The cameras should be known and
professional, the image taken by them will have high quality in which the final 3D model
will be more than acceptable. As we mentioned before, this kind of projects needs a lot
of experiments, one of the reasons for this is the SGBM algorithm, it should be tuned
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differently from one project to another, basing on results given by each project, its pa-
rameters will be optimised by observing the results each time and comparing between
them. Another point should be considered is the distance between the cameras as well as
the distance between the cameras the object being reconstructed.

We tested our system with an object (Bottle), this result is acceptable considering the
used hardware, the left and right images are the following:

(a) Left image (b) Right image

Figure 4.9: Test images

We got the following results displayed on Meshlab:

Figure 4.10: The front

41



Implementation and results

Figure 4.11: The left side

4.3 Conclusion
In this chapter we presented the used tools for the implementation part such program-

ming languages, libraries and development environments, also, we discussed the system,
the factors that affect the final 3D model and we presented and evaluated the results of
this system.
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General conclusion
Computer vision-based systems in the 3D reconstruction context made a huge jump

in multiple areas by enabling a significant reduction in production time and cost with
less efforts, a lot of tasks became automated and the innovation ratio has been extremely
increased. Three-dimensional reconstruction has always been a difficult goal, our work
shows acceptable results, we have not done many experiments due to the hardware limi-
tations and the absence of proper lighting conditions.

Future work
For future, we would try to provide the best conditions to reach better results and add

many improvements to get the maximum accuracy possible. Many ideas for improving
the system, such as:

• Background subtraction can reduce the computation time with less used resources.

• Using a raspberry pi would solve a lot of problems like the USB bus limitation in
computers and make the calibration process easier.

• C++ is the more suitable programming language for this kind of projects, using it
instead of Python could decrease the processing time which provides best real-time
experience.

• A laser scanner is a great addition, the accuracy will be extremely increased.

• High-quality cameras are a must.
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