

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministry of MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA

RECHERCHE SCIENTIFIQUE

Université de Mohamed El-Bachir El-Ibrahimi - Bordj Bou Arreridj

Faculté des Sciences et de la technologie

Département : Electronics

Rapport

Projet de Fin de Cycle (PFC) de Licence

Spécialité : Electronique Industriel

Par

➢ HADJ SAID YAHIA

➢ CHIHANI ROSTOM

➢ TOUMI ABDERRAHMANE

Intitulé :

Présenté le : 22/06/2022

Devant le Jury composé de :

Nom & Prénom Grade Qualité Etablissement

SID AHMED S Dr. Encadreur Univ-BBA

DJELLAL D M. Président Univ-BBA

YOUSFI A Dr. Examinateur Univ-BBA

Année Universitaire 2021/2022

Détection de lignes par OpenCV pour une

Voiture Autonome

Thanks

Praise be to الله, Lord of the Worlds.

At the end of this work, we first want to

Express our deepest gratitude to our

supervisor:

Dr. Sid Ahmed Soumia

Who guided us throughout this work.

We thank everyone who contributed and

Facilitate the completion of this work in good

Terms.

Dedications

We dedicate this modest work

To our dear parents.

 To all our families and friends.

 To all those who encouraged us and

 Supported.

Summary:

Computer Vision is a branch of artificial intelligence that aims to allow a machine to

understand what it "sees" when it connects to one or more cameras. With the widespread use of

digital images, Computer Vision techniques proved to be an indispensable tool in diverse

applications such as video surveillance, video compression, medical imaging, robotics, human

computer interaction. Our project focuses on studying a method for lane line detection in self-

driving cars and doing the implementation in Raspberry Pi 4.

 ملخص:

أحد فروع الذكاء الاصوووعياال الذه ي دل لل الحووولا لهلة ت اا ترام ايداا تت ووو الحاسوووة ة ةتعتبر الرؤي

 كاا را واحدة أو أكثر. اع الاستخدام الةاسع اليعاق لل ةر الرقل ة، أثبتت تقي ات رؤية الكلب ةتر أن ا أداة لا غيل اي ا فل

ل دية، وضوووال ال دية، والت وووةير العبل، والرو ةتات، والت اا الب وووره اع الكلب ةتر. تعب قات اتيةاة اث اللراقبة ا

 Raspberry استعلالفل الح ارات ذات ة الق ادة والق ام التي ذ عريقيركز ا روايا الل دراسة طريقة لاكت ال خل ال

Pi 4 .

Sommaire :

La vision par ordinateur est une branche de l'intelligence artificielle qui vise à permettre

à une machine de comprendre ce qu'elle "voit" lorsqu'elle se connecte à une ou plusieurs

caméras. Avec l'utilisation généralisée des images numériques, les techniques de vision par

ordinateur se sont révélées être un outil indispensable dans diverses applications telles que la

vidéosurveillance, la compression vidéo, l'imagerie médicale, la robotique, l'interaction

homme-machine. Notre projet se concentre sur l'étude d'une méthode de détection de ligne de

voie dans les voitures autonomes et la mise en œuvre dans Raspberry Pi 4.

TABEL OF CONTENTS:

GENERAL INTRODUCTION: ... 1

CHPTER 01:

Introduction: .. 1

I. What is an image? .. 1

I.1. Digital images: ... 1

I.2. Image types: .. 2

I.2.1. Binary images: .. 2

I.2.2. Grayscale image: .. 2

I.2.3. Color image (RGB): ... 3

I.3. Main graphic formats:.. 3

I.3.1. JPEG (.jpg,.jpeg): .. 3

I.3.2. GIF (.gif): .. 3

I.3.3. PNG (.png):... 4

I.3.4. TIFF (.tif, .tiff): .. 4

I.3.5. Bitmap (.bmp): ... 4

I.4. Characteristics of a digital image: ... 4

I.4.1. Pixel: .. 4

I.4.2. Definition: ... 4

I.4.3. Dimension: .. 5

I.4.4. Resolution: .. 5

I.4.5. Noise: .. 5

I.4.6. Luminance: .. 6

I.4.7. Contrast: ... 6

I.4.8. Histogram .. 7

II. Computer Vision: ... 7

II.1. What is Computer Vision? ... 7

II.2. How Computer Vision works: .. 7

II.3. Application fields of Computer Vision: ... 8

II.3.1. Transportation: .. 8

II.3.2. Medical Imaging: .. 8

II.3.3. Safety / COVID-19 Pandemic Protective Measures: ... 9

II.3.4. Agriculture: ... 9

II.3.5. Manufacturing/Optimizing Supply Chains: .. 10

II.3.6. Security: .. 10

II.3.7. Scientific Research: .. 11

II.4. Presentation of the OpenCV library: .. 11

II.4.1. WHAT IS OPEN CV? .. 11

II.4.2. Principal modules of OpenCV 4.2.0: .. 11

Conclusion: .. 13

CHPTER 02:

Introduction: .. 14

PART 1: .. 14

III. Lane line detecting steps: ... 14

III.1. Load an Image: ... 14

III.2. Pre-processing of an image: .. 15

III.2.1. Convert original image to grayscale: .. 15

III.2.2. Apply a slight Gaussian Blur: .. 15

III.3. Canny Edge Detection ... 17

III.3.1. Gradient Calculation .. 17

III.3.2. Non-maximum suppression: ... 17

III.3.3. Thresholding: ... 18

III.4. Define Region of Interest: ... 18

III.5. Hough Transform: ... 19

III.5.1. How does Hough Line method work ... 19

III.6. Add the extrapolated lines to the input image .. 20

III.7. Combine Line Segments into Two Lane Lines: .. 21

III.8. Steering angle: .. 21

III.9. Add pipeline to video: .. 22

PART 2: .. 23

IV. Environment for Development: ... 23

IV.1. HARDWARE : ... 23

IV.1.1. Car components: ... 23

IV.1.2. Raspberry Pi 4 B+:.. 23

IV.1.3. Raspberry Pi Camera Module: .. 24

IV.1.4. L298 Motor Driver: .. 25

IV.1.5. Controlling Car Driving: .. 25

IV.2. SOFTWARE: ... 26

IV.2.1. Installing Raspbian on Raspberry Pi: ... 26

IV.2.2. Programing language: .. 27

IV.2.3. Libraries: ... 27

IV.3. Results: .. 30

IV.3.1. Prototype of Robot model: ... 30

IV.3.2. The track: .. 30

Conclusion: .. 31

GENERAL CONCLUSION: .. 23

REFERENCES: ... 23

WEBOGRAPHY: .. 23

LIST OF FIGURES:

CHPTER 01:

Figure 1. Matrix representation of a digital image ... 1

Figure 2. Three-different image type .. 2

Figure 3. Binary image ... 2

Figure 4. Grayscale [0-255]. ... 3

Figure 5. RGB COLOR .. 3

Figure 6. Representation of pixel in digital image ... 4

Figure 7. Example of image definition ... 5

Figure 8. Example of image resolution .. 5

Figure 9. Example of a noisy image ... 6

Figure 10. Example of three different luminance values of the same image.. 6

Figure 11. Example of three different contrast value of an image ... 6

Figure 12. Example of an RGB image and its histogram ... 7

Figure 13. How Computer Vision works? .. 7

Figure 14. Example of opencv use in transportation .. 8

Figure 15. Image shows X-ray radiography ... 9

Figure 16. Image capturs social distancing violation ... 9

Figure 17. Image shows mask detecting ... 9

Figure 18. Agricultural crop monitoring .. 10

Figure 19. Crop image from drone ... 10

Figure 20. Image shows optimizing supply chains ... 10

Figure 21. Facial recognition application ... 11

CHPTER 02:

Figure 22. Example of an input image ... 14

Figure 23. Converting RGB colors to grayscale ... 15

Figure 24. Converting to a grayscale image ... 15

Figure 25. Gaussian kernel ... 16

Figure 26. Sample Gaussian filter .. 16

Figure 27. Adding Gaussian blur to a grayscale image .. 16

Figure 28. Example shows the principle of the non-maximum suppression. 17

Figure 29. The double threshold step ... 18

Figure 30. The original image and its output after applying the Canny filter 18

Figure 31. Applying a mask on the Canny output image ... 19

file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538405
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538406
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538407
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538408
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538409
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538410
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538411
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538412
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538413
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538414
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538415
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538416
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538417
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538418
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538419
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538420
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538421
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538422
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538423
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538424
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538425
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538426
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538427
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538428
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538429
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538430
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538431
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538432
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538434
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538435

Figure 32. Example shows how Hough Line method works .. 20

Figure 33. Applying Hough transform on masked image .. 20

Figure 34. Showing the extrapolated lines on the input image... 21

Figure 35. Combining line segments into two lane lines ... 21

Figure 36. Representing the steering angle of the car .. 22

Figure 37. Lane Line Detection Algorithm .. 22

Figure 38. Pi Camera Module .. 24

Figure 39. L298 Motor Driver .. 25

Figure 40. Electronic circuits ... 25

Figure 41. Raspberry Pi Imager .. 26

Figure 42. Raspberry Pi desktop with terminal .. 26

Figure 43. Python version... 27

Figure 44. Raspberry PI configuration tool window .. 27

Figure 45. Raspberry PI configuration tool window 2 ... 28

Figure 46. How to paste the code on terminal .. 28

Figure 47. Install Python package on Thonny IDE .. 29

Figure 48. Find package from PyPI .. 29

Figure 49. install the package ... 30

Figure 51. Side Perspective of the Car ... 30

Figure 50. Front Perspective of the Car .. 30

Figure 52. Track Layout ... 30

file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538436
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538437
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538438
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538439
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538440
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538441
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538442
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538443
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538444
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538445
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538446
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538447
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538448
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538449
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538450
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538451
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538452
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538453
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538454
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538455
file:///E:/lane%20line%20detection%20with%20opencv.docx%23_Toc106538456

GENERAL INTRODUCTION:

Computer Vision is a branch of artificial intelligence (AI) that allows computers and

systems to extract meaningful information from a single image or a sequence of images, it aims

to automate the tasks that the visual system of a human can perform.

OpenCV (Open-Source Computer Vision) is a library of algorithms mainly aimed at real-time

Computer Vision. With the advent of powerful machines, we are getting more processing power

to work with. With its focus on real-time vision, OpenCV helps students and professionals to

efficiently implement projects and jump-start research by providing them with a Computer

Vision infrastructure that was previously available only in a few major research labs.

An autonomous car is a vehicle capable of detecting its environment and to operate without

human intervention. Autonomous cars developers use artificial intelligence techniques and

work on large quantities of data that include images from cameras on autonomous cars from

which the car learns to identify the traffic lights, the trees, sidewalk borders, pedestrians, traffic

signs and other parts of any driving environment given.

In this work, we are interested in writing and executing an algorithm using OpenCV library for

line detection on Raspberry Pi 4. The lines detection algorithm intended for an autonomous car

in order to keep the car on the right track using the OpenCV library.

Our project is divided into two main chapters:

CHAPTER 1:

 In this project our input data are images, so in the theoretical chapter; we first dedicated a

small portion to talk about images and their characteristics, then we introduced the Computer

Vision domain and its application fields. lastly, we explained in a detailed manner the structure

of the library OpenCV and why do we particularly need it to make the achievement of our goal

easier.

CHAPTER 2:

 The experimental chapter is divided into two parts; in the first one we have explained the

steps we followed to detect the lane lines then is the second one we talked in more details how

we implemented our program on Raspberry Pi 4.

CHAPTER 01

CHAPTER 01 COMPUTER VISION

1

Introduction:

Computer Vision is a field of artificial intelligence (AI) that aims to develop techniques

that help computers to capture, interpret, understand, and process the objects that are visually

perceivable. This allows Computer Vision systems to react appropriately. In this research, we

will use OpenCV which is a Computer Vision library but first we need to understand the field

of image processing and the characteristics of digital images.

I. What is an image?

 An image is a planar representation of a scene or an object located in general in a three-

dimensional environment, it comes from the contact of light rays coming from objects forming

the scene with a sensor (camera, scanner, X-rays, etc.). It's actually just a spatial representation

of light. The image is considered as a set of points to which a physical quantity (luminance,

color) is assigned.

I.1. Digital images:

 A digital image is a representation of a real image as a set of numbers that can be stored and

handled by a digital computer. In order to translate the image into numbers, it is divided into

small areas called pixels (picture elements). For each pixel, the imaging device records a

number, or a small set of numbers, that describe some property of this pixel such as its

brightness (the intensity of the light) or its color. The numbers are arranged in an array of rows

and columns that correspond to the vertical and horizontal positions of the pixels in the image

[1].

1

1 http://hamamatsu.magnet.fsu.edu/articles/images/digitalimagesfigure1.jpg

Figure 1. Matrix representation of a digital image

https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/digital-image
https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/digital

CHAPTER 01 COMPUTER VISION

2

I.2. Image types:

 Before explaining the difference between the three types of images, binary, gray and color

images, we show in the figure below an example of the same image with different types:

I.2.1. Binary images:

 It is the simplest type of image. The binary image consists of a 1-bit image and it takes only

1 binary digit to represent a pixel Black and White ‘0’ and ‘1’. Binary images are mostly used

for general shapes or outlines.

 Binary images are generated using the threshold operation. When a pixel is above the

threshold value, then it is turned white ('1') and which are below the threshold value then they

are turned black ('0').

2

I.2.2. Grayscale image:

 Grayscale images are monochrome images, means they have only one color “shades of gray”.

2 https://learnlearn.uk/binary/wp-content/uploads/sites/11/2017/01/step-1-binary-bitmap-bw.png

 BINARY IMAGE GREY SCAL IMAGE COLOR IMAGE (RGB)

Figure 2. Three-different image type

Figure 3. Binary image

CHAPTER 01 COMPUTER VISION

3

 A normal grayscale image contains 8 bits/pixel data, which has 256 different grey levels.

I.2.3. Color image (RGB):

 Color images are three band monochrome images in which, each band contains a different

color and the actual information is stored in the digital image. The color images contain gray

level information in each spectral band. The images are represented as red, green and blue (RGB

images), And each color image has 24 bits/pixel means 8 bits for each of the three-color band

(RGB) [2].

3

I.3.Main graphic formats:

I.3.1. JPEG (.jpg,.jpeg):

 JPEG, which stands for Joint Photographic Experts Groups is a “lossy” format meaning that

the image is compressed to make a smaller file. The compression does create a loss in quality

but this loss is generally not noticeable.

I.3.2. GIF (.gif):

 GIF or Graphics Interchange Format files are widely used for web graphics, because they

are limited to only 256 colors, can allow for transparency, and can be animated. GIF files are

typically small in size and are very portable.

3 https://publicdomainvectors.org/photos/1304647802.png

0 255

Figure 4. Grayscale [0-255].

Figure 5. RGB COLOR

CHAPTER 01 COMPUTER VISION

4

I.3.3. PNG (.png):

 PNG or Portable Network Graphics files are a lossless image format originally designed to

improve upon and replace the GIFformat. PNG files are able to handle up to 16 million colors,

unlike the 256 colors supported by GIF.

I.3.4. TIFF (.tif, .tiff):

 TIFF or Tagged Image File Format are lossless images files meaning that they do not need

to compress or lose any image quality or information (although there are options

for compression), allowing for very high-quality images but also larger file sizes.

I.3.5. Bitmap (.bmp):

 BMP or Bitmap Image File is a format developed by Microsoft for Windows. There is no

compression or information loss with BMP files, which allows images to have very high quality,

but also very large file sizes. Due to BMP being a proprietary format [3].

I.4. Characteristics of a digital image:

I.4.1. Pixel:

 An image consists of a set of points called “pixel” (Picture element) thus represents the

smallest constituent element of a digital image. For 3D images the "pixel" is then called a voxel,

and represents a volume elementary. Examples of such images are found in medical images.

The axial tomographic images are thus images constructed from several X-rays taken from

different viewing angles.

I.4.2. Definition:

 The number of points (pixels) constituting an image is called definition; it is the number of

columns of the image multiplied by its number of lines. An image with 10 columns and 11 lines

will have a definition of 10 x 11, that is 110 pixels.

Figure 6. Representation of pixel in digital image

CHAPTER 01 COMPUTER VISION

5

4

I.4.3. Dimension:

 The dimension of an image corresponds to the measurements (𝑤𝑖𝑑𝑡ℎ 𝑥 𝑙𝑒𝑛𝑔𝑡ℎ) of a digital

image, for example 4608x3072 px. Usually, we start by giving the width. The Dimension of a

graphic file is given in pixels.

I.4.4. Resolution:

 The resolution of an image is the number of dots contained in a given length (in inches). It is

expressed in dots per inch (DPI in French or DPI in English for Dots Per Inch).

An inch measures 2.54 cm, it is a British unit of measurement used in English-speaking

countries.

I.4.5. Noise:

 Noise is a random variation of brightness or color information in images, and it is usually

an aspect of electronic noise. It can be produced by the image sensor and circuitry of

a scanner or digital camera. Image noise can also originate in film grain and in the

4 https://www.lossendiere.com/2016/08/31/caracteristiques-dune-image-numerique/

Figure 7. Example of image definition

Figure 8. Example of image resolution

https://en.wikipedia.org/wiki/Image
https://en.wikipedia.org/wiki/Electronic_noise
https://en.wikipedia.org/wiki/Image_sensor
https://en.wikipedia.org/wiki/Image_scanner
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Film_grain

CHAPTER 01 COMPUTER VISION

6

unavoidable shot noise of an ideal photon detector. Image noise is an undesirable by-product

of image capture that obscures the desired information.

I.4.6. Luminance:

 Luminance is the luminous intensity projected on a given area and direction. Luminance

typically describes the intensity of emitted light. In the case of our display profiling products,

we measure the luminance of the cd/m2 as the unit of measure.

I.4.7.Contrast:

 Contrast is the scale of difference between pure black and pure white. In most cases, when

you take out your phone and take a selfie, you can get a medium contrast image. If you want to

make the object stand out, you can use light and shadow to increase or decrease contrast.

Figure 9. Example of a noisy image

Normal image Noisy image

Low luminance Normal luminance

High luminance

 Figure 10. Example of three different luminance values of the same image

Low contrast Normal contrast High contrast

Figure 11. Example of three different contrast value of an image

https://en.wikipedia.org/wiki/Shot_noise

CHAPTER 01 COMPUTER VISION

7

I.4.8. Histogram

 An image histogram is a graph of pixel intensity (on the x-axis) versus number of pixels (on

the y-axis). The x-axis has all available gray levels, and the y-axis indicates the number of

pixels that have a particular gray-level value.2 Multiple gray levels can be combined into

groups in order to reduce the number of individual values on the x-axis.

II.Computer Vision:

II.1. What is Computer Vision?

 Computer Vision is a collection of algorithms that allow a computer to analyze an image and

extract useful information. It is used in many applications, and it is rapidly becoming a part of

everyday life.

II.2.How Computer Vision works:

 It all starts with an image. The computer analyzes an image to identify lines, corners, and a

broad area of colors. This process is called feature extraction, once the features are extracted,

the computer can use this information for many different tasks.

Figure 13. How Computer Vision works?

Original image

Figure 12. Example of an RGB image and its histogram

CHAPTER 01 COMPUTER VISION

8

II.3.Application fields of Computer Vision:

 Computer Vision is a powerful feature that can be combined with many types of applications

and sensing devices to support a number of practical use cases. Here are some of the different

types of Computer Vision applications fields [4]:

II.3.1. Transportation:

 The increasing demands of the transportation sector have propelled technological

development in this industry, with Computer Vision at its center. As an example, the Self-

driving cars use real-time object identification and tracking to gather information about what's

happening around them and steer accordingly.

5

II.3.2. Medical Imaging:

 Computer Vision has been used in various healthcare applications to assist medical

professionals in making better decisions regarding the treatment of patients. Medical imaging

or medical image analysis is a method that creates a visualization of particular organs and

tissues to enable a more accurate diagnosis. With medical image analysis, it becomes easier for

doctors and surgeons to glimpse the patient’s internal organs to identify any issues or

abnormalities.

 X-ray radiography, ultrasound, MRI, endoscopy, etc., are a few of the disciplines within

medical imaging.

5 https://www.v7labs.com/blog/computer-vision-applications#h1

Figure 14. Example of opencv use in transportation

CHAPTER 01 COMPUTER VISION

9

II.3.3. Safety / COVID-19 Pandemic Protective Measures:

 As the Covid-19 pandemic hit the world in early 2020, it brought several manufacturing

activities to a halt. Even as the activities resumed, several manufacturing plants made social

distancing and wearing masks mandatory for workers’ safety. Computer Vision applications

are tremendously helpful in this case, as it makes it possible to effectively monitor the

workforce to identify any violations of the Covid-19 protocol. In addition, the use of such

Computer Vision models in manufacturing plants will ensure a safe working environment

during and even after the pandemic.

II.3.4. Agriculture:

 The agricultural sector has witnessed a lot of contributions when it comes to Artificial

Intelligence (AI) and Computer Vision in areas like plant health detection and monitoring,

planting, weeding, harvesting, and advanced analysis of weather conditions.

Figure 15. Image shows X-ray radiography

Figure 17. Image shows mask detecting Figure 16. Image capturs social distancing

violation

CHAPTER 01 COMPUTER VISION

10

II.3.5. Manufacturing/Optimizing Supply Chains:

 Optimizing the supply chain process is beneficial for manufacturing plants to reduce costs

while enhancing customer satisfaction. Several manufacturing enterprises have turned to

Computer Vision applications for tasks like warehouse management, managing inventories, and

improving efficiency in the organization, For example, companies like Amazon and Walmart

are working to implement drone systems to monitor warehouse inventories, real-time

processing of camera streams is used to detect empty containers and optimize restocking.

6

II.3.6. Security:

 Facial Recognition cameras are an integral part of many smart cities. These cameras keep

monitoring the city for criminal activities, can recognize moving objects, and detect

wrongdoing. In addition, smart surveillance systems can send alerts when irregular activity

occurs in the town. The signs are dispatched with the help of public safety agencies.

6 https://esfam.auf.org/wp-content/uploads/2020/09/supply-chain-management-Illustration.jpg

Figure 19. Crop image from drone Figure 18. Agricultural crop monitoring

Figure 20. Image shows optimizing supply chains

https://ethz.ch/content/dam/ethz/special-interest/mtec/pom-dam/documents/Drones%20in%20warehouse%20opeations_POM%20whitepaper%202019_Final.pdf

CHAPTER 01 COMPUTER VISION

11

II.3.7. Scientific Research:

 Computer Vision can for example help in identifying invisible objects to the human eye in

medical images, to prevent the diagnosis of diseases that are usually detected too late.

These were examples that show the wide uses of Computer Vision in different areas.

II.4. Presentation of the OpenCV library:

II.4.1. WHAT IS OPEN CV?

 OpenCV (also known as Open-Source Computer Vision) is an open-source library for

Computer Vision and Machine Learning. It has many functionalities for image processing and

Computer Vision. It is a cross-platform library, and it works with many programming languages

and operation systems. The library has more than 2,500 optimized algorithms for Machine

Learning and Computer Vision tasks. It has a community of more than 47,000 Computer Vision

professionals, and it has been downloaded more than 18 million times [5].

II.4.2. Principal modules of OpenCV 4.2.0:

OpenCV consists of two types of modules, main and additional modules [6]:

• Main modules: These modules are more or less the core modules of OpenCV and come

by default with the packaged versions. They form core modules because they provide

the core functionalities such as image processing tasks, filtering, transformation, and

others.

Figure 21. Facial recognition application

CHAPTER 01 COMPUTER VISION

12

• Extra modules: These modules do not come by default with the OpenCV distribution.

These modules are related to additional Computer Vision functionalities such as text

recognition.

Main Modules:

a) Core:

Includes all core OpenCV functionalities such as basic structures, Mat classes, and so on.

b) Imgproc:

Includes image-processing features such as transformations, manipulations, filtering, and so on.

c) Imgcodecs:

Includes functions for reading and writing images.

d) Videoio:

Includes functions for reading and writing videos.

e) highgui:

Includes functions for GUI creation to visualize results.

f) Video:

 Includes video analysis functions such as motion detection and tracking, the Kalman filter,

and the infamous CaM Shift algorithm (used for object tracking).

g) calib3d:

 Includes calibration and 3D reconstruction functions that are used for the estimation of

transformation between two images

h) features2d:

 Includes functions for keypoint-detection and descriptor-extraction algorithms that are used

in object detection and categorization algorithms.

i) Objdetect:

Supports object detection.

j) dnn:

 Used for object detection and classification purposes, among others. The dnn module is

relatively new in the list of main modules and has support for deep learning.

CHAPTER 01 COMPUTER VISION

13

k) ml:

 Includes functions for classification and regression and covers most of the Machine Learning

capabilities.

l) Flann:

 Supports optimized algorithms that deal with the nearest neighbor search of high-dimensional

features in large data sets. Flann stands for Fast Library for approximate nearest neighbors

(FLann).

m) Photo:

 Includes functions for photography-related Computer Vision such as removing noise,

creating HD images, and so on.

n) Stitching:

 Includes functions for image stitching that further uses concepts such as rotation, estimation

and image warping.

o) Shape:

 Includes functions that deal with shape transformation, matching, and distance-related topics.

p) Superres:

Includes algorithms that handle resolution and enhancement.

q) Videostab:

Includes algorithms used for video stabilization.

r) Viz:

Display widgets in a 3D visualization window.

Conclusion:

In this chapter we have introduced some basics about images as they will be our data inputs,

and we have given some details about the Computer Vision field to understand why we will use

OpenCV which is a Computer Vision library, so we at least, understood what is Computer

Vision and its applications. And to conclude we gave the structure of the OpenCV library.

CHAPTER 02

CHAPTER 02/ PART 01 ALGORITHM OF LINE DETECTION

14

Introduction:

A self-driving car, also known as an autonomous vehicle, is a car that senses its

environment and moves safely with little or no human interaction. Identifying lane lines is a

very important task to keep the vehicle in the constraints of the lane. In our project we will

describe a simple pipeline for lane detection and implement it on Raspberry Pi 4 that we mount

it on a small robotic car, then put this latter on a track layout to see how it performs. But before

we can detect lane lines in a video, we must be able to detect lane lines in a single image. Once

we can do that, detecting lane lines in a video is simply repeating the same steps for all frames

in a video. To do this in an easier way, we will use OpenCV-Python open-source library.

PART 1:

III. Lane line detecting steps:

In order to achieve our goal, we will follow these steps:

1. Load an Image.

2. Pre-processing of image:

2.1. Convert to grayscale.

2.2. Gaussian Blur.

3. Canny Edge Detection.

4. Region of interest.

5. Hough Transform.

6. Add the extrapolated lines to the input image.

7. Combine Line Segments into Two Lane Lines.

8. Steering angle.

9. Add pipeline to video.

Next, we explain how we implement each step using OpenCV.

III.1. Load an Image:

To read an image in OpenCV we use 𝑖𝑚𝑟𝑒𝑎𝑑 function:

Syntax: cv2.imread (“Path”, Flag).

Figure 22. Example of an input image

CHAPTER 02/ PART 01 ALGORITHM OF LINE DETECTION

15

III.2. Pre-processing of an image:

III.2.1.Convert original image to grayscale:

 We take as an example the image below and apply all the detection steps on it. Our goal is

to find the yellow and white lanes. To do so, as a first step we need to convert the original image

to a grayscale one. The grayscale-weighted average is represented by the following equation:

Grayscale = 0.299 * R + 0.587 * G + 0.114 * B

 Where R, G and B are integers representing red (R), green (G) and blue (B), with values in

the range from 0 to 255 [7].

Examples:

III.2.2.Apply a slight Gaussian Blur:

 In real systems the captured images are noisy images so it is necessary to filter them before

detecting the edges in order to avoid detecting fake contours.

Gaussian Blur (Gaussian smoothing) is a pre-processing step used to reduce the noise from the

image. This filter works by taking a pixel and calculating a value (similar to the mean, but with

more bias in the middle). The filter is constructed based on normal distribution, which is shaped

like a bell curve. The idea is that pixels closer to the center pixel have a larger weight than those

further away [8].

To make it clearer, below an example of a gaussian kernel applied on a small matrix.

Figure 23. Converting RGB colors to grayscale

Figure 24. Converting to a grayscale image

CHAPTER 02/ PART 01 ALGORITHM OF LINE DETECTION

16

We apply the filter in Figure 26 on the matrix below.

To, to modify the 𝑝𝑖𝑥𝑒𝑙(2,4):

4 𝑥 200 + 2 𝑥 (200 + 200 + 100 + 100) + 1 𝑥 (200 + 200 + 200 + 100) = 𝟐𝟕𝟎𝟎.

2700/ (4 + 2 𝑥 4 + 1 𝑥 4) = 𝟏𝟔𝟖. 𝟕𝟓.

 After applying the filter on this segment, the color will be between blue and pink but more

on the pink side. This will likely create a gradient effect and smooth harsh edges.

To do this in OpenCV we simply apply this function: 𝑐𝑣2. 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐵𝑙𝑢𝑟().

Figure 25. Gaussian kernel
Figure 26. Sample

Gaussian filter

Figure 27. Adding Gaussian blur to a grayscale image

CHAPTER 02/ PART 01 ALGORITHM OF LINE DETECTION

17

III.3. Canny Edge Detection

The complicated conditions of road make the correct edge detection of lane markings

become very challenging. In order to get an ideal edge of lane markings in a road image, we

apply the Canny detector which is an edge detection operator that uses a multi-stage algorithm

to detect a wide range of edges in images [9].

III.3.1.Gradient Calculation

The Gradient calculation step detects the edge intensity and direction by calculating the

gradient of the image using edge detection operators. The gradients can be determined by using

Sobel filters for both directions (horizontal and vertical) where A is the image. An edge occurs

when the color of an image changes, hence the intensity of the pixel changes as well.

 𝐺𝑥 = ⟦
−1 0 + 1
−2 0 + 2
−1 0 + 1

⟧ ∗ 𝑨 ; 𝐺𝑦 = ⟦
−1 − 2 − 1
 0 0 0
+1 + 2 + 1

⟧ ∗ 𝑨

Then, we calculate the magnitude and angle of the directional gradients:

 Magnitude: |𝐺| = √𝐺𝑥2 + 𝐺𝑦2

 Angle: 𝜃 = tan−1(𝐺𝑦/𝐺𝑥)

III.3.2.Non-maximum suppression:

Ideally, the final image should have thin edges. Thus, we must perform non-maximum

suppression to thin out the edges by scanning the entire image to get rid of pixels that might not

be part of an edge. Non-maximum suppression works by finding pixels that are local maximum

in the direction of the gradient (gradient direction is perpendicular to edges).

 For example, in Figure 28 we have three pixels that are next to each other: pixels a, b, and

c. Pixel b is larger in intensity than both a and c where pixels a and c are in the gradient direction

of b. Therefore, pixel b is marked as an edge. Otherwise, if pixel b was not a local maximum,

it would be set to 0 (i.e., black), meaning it would not be an edge pixel.

7

7 https://machinelearningknowledge.ai/wp-content/uploads/2020/06/Canny-Edge-Detection-Non-Max-
Suppression.jpg

Figure 28. Example shows the principle of the non-maximum

suppression.

CHAPTER 02/ PART 01 ALGORITHM OF LINE DETECTION

18

III.3.3.Thresholding:

 Non-maximum suppression is not perfect because some edges might actually be noise and

not real edges. To solve this, Canny Edge Detector goes one-step further and applies

thresholding to remove the weakest edges and keep the strongest ones. Edge pixels that are

borderline weak or strong are only considered strong if they are connected to strong edge pixels.

 Thresholding sets two thresholds, a high and a low threshold. In this algorithm, we

normalized all the values such as that they will only range from 0 to 1. Pixels with a higher

value are most likely to be edges. For example, you might choose the high threshold to be 0.7,

this means that all pixels with a value larger than 0.7 will be a strong edge. You might also

choose a low threshold of 0.3, this means that all pixels less than it are not an edge and you

would set it to 0. The values in between 0.3 and 0.7 would be weak edges.

Figure 29. The double threshold step

To do this in OpenCV we simply apply this function: 𝑐𝑣2. 𝐶𝑎𝑛𝑛𝑦().

III.4. Define Region of Interest:

 The region of interest for the car’s camera is only the two lanes immediately in its field of

view and not anything extraneous. We can filter out the extraneous pixels by making a polygon

region of interest and removing all other pixels that are not in the polygon.

I.
Figure 30. The original image and its output after applying the Canny filter

CHAPTER 02/ PART 01 ALGORITHM OF LINE DETECTION

19

 When the Mask object is added to the image area, only the non-zero area is visible, and all

the pixel values in the Mask that overlap with the image will be invisible. That is to say, the

shape and size of the Mask area directly determines what you see. The size and shape of the

final image.

III.5. Hough Transform:

 Now that we have detected edges in the region of interest, we want to identify lines, which

indicate lane lines. This is where the Hough transform comes in handy. Before explaining how

Hough transform works let us remind you that a straight line can be represented by two

parameters.

1. The line is then described as: 𝑦 = 𝑎 𝑥 + 𝑏, (𝑎, 𝑏) correspond to slope and intercept.

2. or as 𝑟 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 , 𝑟 , is the shortest distance from the origin to the line

(approaching the line perpendicularly). The second, θ, is the angle between x-axis and

the distance line.

III.5.1. How does Hough Line method work

First, it creates a 2D array or accumulator (to hold values of two parameters) and it is set

to zero initially. Let rows denote the 𝑟 and columns denote the (𝜃) theta. Then, the size of the

array depends on the accuracy you need. If you need the accuracy of the angles to be 1 degree,

you then need 180 columns. For “𝑟”, if you need the accuracy to be one pixel you then you take

the maximum distance possible which is the diagonal length of the image. The example below

explains better the idea behind it [10].

 Consider an 100 × 100 image with a horizontal line at the middle. Take the first point of

the line. You know its (𝑥, 𝑦) values. Now in the line equation, put the values 𝜃(𝑡ℎ𝑒𝑡𝑎) =

 0,1,2, … ,180 and check the 𝑟 you get. For every (𝑟, 0) pair (𝑟 is measured in pixels and 0 is

measured in radians) you increment value by one in the accumulator in its

corresponding (𝑟, 0) cells. So now in accumulator, the cell (50, 90) = 1 along with some

Figure 31. Applying a mask on the Canny output image

CHAPTER 02/ PART 01 ALGORITHM OF LINE DETECTION

20

other cells. Now take the second point on the line. Do the same as above. Increment the values

in the cells corresponding to (𝑟, 0) you got. This time, the cell (50, 90) = 2. We are actually

voting the (𝑟, 0) values. You continue this process for every point on the line. At each point,

the cell (50, 90) will be incremented or voted up, while other cells may or may not be voted

up. This way, at the end, the cell (50, 90) will have maximum votes. Therefore, if you search

the accumulator for maximum votes, you get the value (50, 90) which says, there is a line in

this image at distance 50 from origin and at angle 90 degrees.

To do this in OpenCV we simply apply this function: 𝑐𝑣2. 𝐻𝑜𝑢𝑔ℎ𝐿𝑖𝑛𝑒𝑠().

III.6. Add the extrapolated lines to the input image

 We then overlay the extrapolated lines to the input image. We do this by adding a weight

value to the original image based on the detected lane line coordinates [11].

Figure 33. Applying Hough transform on masked image

Figure 32. Example shows how Hough Line method works

CHAPTER 02/ PART 01 ALGORITHM OF LINE DETECTION

21

III.7. Combine Line Segments into Two Lane Lines:

 Now that we have many small line segments with their endpoint coordinates (x1, y1) and

(x2, y2), how do we combine them into just the two lines that we really care about, namely the

left and right lane lines? One way is to classify these line segments by their slopes. We can see

from the picture above that all line segments belong to the left lane line should be upward

sloping and on the left side of the screen, whereas all line segments belong to the right lane line

should be downward sloping and be on the right side of the screen. Once the line segments are

classified into two groups, we just take the average of the slopes and intercepts of the line

segments to get the slopes and intercepts of left and right lane lines.

III.8. Steering angle:

 Now that we have the coordinates of the lane lines, we need to steer the car so that it will

stay within the lane lines, even better, we should try to keep it in the middle of the lane. We

need to compute the steering angle of the car, given the detected lane lines. In the Figure below

the red line in the middle represents the steering angle of the car.

Figure 34. Showing the extrapolated lines on the input image

Figure 35. Combining line segments into two lane lines

CHAPTER 02/ PART 01 ALGORITHM OF LINE DETECTION

22

III.9. Add pipeline to video:

 Once we have designed and implemented the entire car lane detection pipeline, we apply

the transformation frame by frame. We need a video of car driving on lane lines to do this.

Figure 36. Representing the steering angle of the car

Figure 37. Lane Line Detection Algorithm

CHAPTER 02/ PART 02 APPLICATION HADRWARE/ SOFTWARE

23

PART 2:

IV. Environment for Development:

We will describe all hardware and software we used in developing this project.

IV.1. HARDWARE :

IV.1.1. Car components:

- Raspberry Pi 4 B+.

- Raspberry Pi Camera Module (640*480).

- Power Banks (5v/3A); to power raspberry pi.

- 2×(DC Geared Motor 100 RPM).

- L298 Motor Driver.

- 7 ~ 12V Battery; to power DC motor.

- Wheels.

- Jumper wires.

IV.1.2. Raspberry Pi 4 B+:

A. Difference between Raspberry Pi and Arduino:

This table resume the main differences between Raspberry Pi and Arduino:

Basis Arduino Raspberry Pi

License Arduino is an open-source project.

Both its software and hardware

design are open source.

Both hardware and software of

Raspberry Pi are closed source.

Control Unit From Atmega Family From ARM Family

Clock Frequency 16 MHz (Arduino UNO) Up to 1.5 GHz in Raspberry Pi 4 B

RAM Requires less RAM (2kB) Requires large RAM (more than 1

GB)

CPU Architecture 8-bit 64-bit

Logic level Arduino’s logic level is 5V. Raspberry Pi’s logic level is 3V.

Power Consumption Consumes about 200 MW of power Consumes about 700 MW of power

Based on Arduino is a Microcontroller Raspberry Pi is based on a

microprocessor

Hardware Structure Simple hardware structure Complex hardware Structure

Software Arduino boards are programmable

using C/C++ languages.

Raspberry Pi supports its own

Linux-based operating system

Raspberry Pi OS. You can also

install the OS you like.

CHAPTER 02/ PART 02 APPLICATION HADRWARE/ SOFTWARE

24

Internet Arduino does not have internet

support. You need additional

modules or shields to connect it to

the internet.

Raspberry Pi has a built-in Ethernet

port and Wi-Fi support.

Cost Arduino boards are cheaper. Raspberry Pi boards are expensive.

How they handle

power drop

Arduino devices begin executing

code when they are turned on.

Therefore, when power is turned

off, abruptly, you will not end up

with a corrupt operating system or

errors. The code will simply start

again when plugged in.

Raspberry Pi requires the same

care as a PC. You have to shut the

operating system down properly.

Current drive

strength

Higher current drive strength Lower current drive strength

Capability Arduino is generally used to

perform single (and simple) tasks

repeatedly.

Raspberry Pi can perform multiple

tasks simultaneously.

Wireless connectivity Arduino does not support Bluetooth

or Wi-Fi.

Raspberry Pi supports Bluetooth

and Wi-Fi.

Applications Traffic light countdown timer,

Parking lot counter, Weighing

machines, etc.

Robot controller, Game servers,

Stop motion cameras, etc.

 In our project, we will control the car, based on the video captured by the camera, and process

it using the OpenCV library, so the best option for this project is Raspberry Pi.

B. Characteristics of the used Raspberry Pi:

- Processor: Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz.

- Memory: 2GB.

- GPIO: Standard 40-pin GPIO header.

- Hard disk: 64 GB Micro SD card slot for loading operating system and data storage.

IV.1.3.Raspberry Pi Camera Module:

 The camera is the eye of the car. The camera is interfaced with the Raspberry Pi and can

continuously capture the images that represent the track layout.

Figure 38. Pi Camera Module

CHAPTER 02/ PART 02 APPLICATION HADRWARE/ SOFTWARE

25

IV.1.4.L298 Motor Driver:

 The differential drive is a two-wheeled drive system with independent actuators for each

wheel. The name refers to the fact that the motion vector of the

robot is the sum of the independent wheel motions. The drive

wheels are usually placed on each side of the robot and towards

the front. Two motors at both sides are connected in parallel, so

motor controller consider it as single unit. The Difference

between voltages supplied to motors at both sides makes the car

turn to a certain radius either to the right or to the left.

IV.1.5.Controlling Car Driving:

 There are following control pins on L298N:

- Speed Control: ENA, ENB.

- Direction Control: IN1, IN2, IN3, IN4.

Figure 39. L298 Motor

Driver

Figure 40. Electronic circuits

CHAPTER 02/ PART 02 APPLICATION HADRWARE/ SOFTWARE

26

IV.2. SOFTWARE:

IV.2.1. Installing Raspbian on Raspberry Pi:

Step (1): First, we download and install Raspberry Pi Imager to a computer with an SD card

reader. Then we put the SD card that we will use with our Raspberry Pi into the reader and run

Raspberry Pi Imager.

Step (2): After we run the Raspberry imager we choose the operating system, the SD card,

and finally write and verify the SD card.

Step (03): We insert the microSD card we have just flashed with the Raspberry Pi imager to

the microSD card slot of our Raspberry Pi 4. Then, we connect a USB keyboard, a USB mouse,

and a micro-HDMI cable of our monitor to our Raspberry Pi 4.

Finally, we connect the USB Type-C power cable to our Raspberry Pi 4 and power it on.

Figure 41. Raspberry Pi Imager

Figure 42. Raspberry Pi desktop with terminal

CHAPTER 02/ PART 02 APPLICATION HADRWARE/ SOFTWARE

27

IV.2.2. Programing language:

A. Python:

 In our project we used Python as it is a widely used general-purpose, high-level programming

language. Its syntax allows us to express concepts in fewer lines of code if we compare it with

other languages like C, C++or java.

B.Checking Python Version on Raspberry Pi:

To check python version on raspberry pi, we type these commands on the terminal:

Note: we have installed the latest version of Python 3.9.5.

IV.2.3. Libraries:

A. Install OpenCV on Raspberry Pi:

To install OpenCV on Raspberry Pi, we follow these steps:

Step (01): Expand the File system, by typing this command on Raspbian terminal:

sudo raspi-config

 This will open the “Raspberry PI configuration tool” window. Then we Select “Advanced

Options”, and hit Enter (Figure 44).

On the new window appears, we select “A1 Expand Filesystem” and hit Enter (Figure 45).

Figure 44. Raspberry PI configuration tool window

Figure 43. Python version

CHAPTER 02/ PART 02 APPLICATION HADRWARE/ SOFTWARE

28

Step (02): Update the system, by executing the commands below on Raspbian terminal:

sudo apt update

sudo apt upgrade

Step (03): We go to GitHub repositories and copy the code (Figure 46). Then we paste the code

on Terminal with this command:

sudo git clone https://github.com/freedomwebtech/rpi-bullseye-opencv4.5.5.git

After that, we write these following commands below.

Ls

cd rpi-bullseye-opencv4.5.5/

Ls

sudo chmod 775 install.sh

Ls

Sudo ./install.sh

Figure 45. Raspberry PI configuration tool window 2

Figure 46. How to paste the code on terminal

https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbFQwRjJFNmJkZTF3Tl9BX256eFl6MjlxLUNkUXxBQ3Jtc0tsXzl4VW1uMG5seGYxaDRjMFNRNFVCaGNQMWtQYklrSUpfejgwRy1QbDluQ0syMjBvOWpXWGo4SWVGMzhzdnA1b1R4em1Lc21KQWE5c0hJdkFUdTZSOGhaRUExZllUQVQxSmlsQS1BN21saU1icjFZWQ&q=https%3A%2F%2Fgithub.com%2Ffreedomwebtech%2Frpi-bullseye-opencv4.5.5&v=a_Ar-fF5CWE

CHAPTER 02/ PART 02 APPLICATION HADRWARE/ SOFTWARE

29

Step (04): To check OpenCV Version we type these commends:

python3

>>> import cv2

>>> cv2.__version__

B. Install Python package on Thonny IDE (editor):

To install Python package on Thonny IDE, we must follow these steps:

- First, we open Thonny IDE, then we select “Manage Packages” from the tool’s menu

(Figure 47).

- Enter the name of the package we want to install. Click on “Find package from PyPI”

(Figure 48).

- Click on “Install” to install the package. Finally, when the package has been installed,

we click “close” (Figure XX).

Figure 47. Install Python package on Thonny

IDE

Figure 48. Find package from PyPI

CHAPTER 02/ PART 02 APPLICATION HADRWARE/ SOFTWARE

30

IV.3. Results:

IV.3.1. Prototype of Robot model:

The figure represents the final form of our robot model:

IV.3.2. The track:

The following figure represents the track layout of our robot model:

 After we released our car on the track layer it was capable of moving forward but unfortunately

there were a problem in the corners, we will try to solve it in our future work.

Figure 49. install the package

Figure 50. Side Perspective of the Car Figure 51. Front Perspective of the Car

Figure 52. Track Layout

CHAPTER 02/ PART 02 APPLICATION HADRWARE/ SOFTWARE

31

Conclusion:

 In this chapter, we have seen how to set up a detection system for lane lines, which can be

used for self-driving cars. The algorithm we used gave us good results. However, it is not

always perfect; for example, our track couldn’t follow the lines in the corners of the track layout

so we need to optimize the driving decision step.

GENERAL CONCLUSION:

 We have come a long way since chapter 1, where we managed to build our own car that is

able to detect the lane line of the road.

 To recap, in chapter 1, we introduced the three types of an image and its characteristics,

then we touched on the definition of Computer Vision and how it works, as well as some of its

application fields in real life, and then we detailed the OpenCV library and its principal

modules.

 In chapter 2, we divided this chapter into two parts. In part one, we tried to write an

algorithm that helps us define the lane line of the road, after several steps from processing the

captured images to eliminating any noise in them, to applying canny method and Hough

transform, and finally finding the steering angle, which we directed the car along the road based

on it.

 In part two, we saw the hardware and software needed to develop this project; we began

with the hardware where we introduced the component of our car: Raspberry Pi, Pi camera

module, l289 motor driver and others. Then the software where we started working with the

Raspberry Pi by installing the Raspbian operating system and configuring it. Then installing

OpenCV and other libraries. Finally, we showed the result we have obtained.

This project has introduced us to a new field of Computer Vision that we really want to

exploit alongside Deep learning in our future project.

REFERENCES:

BOOKS and PROJECT REPORT:

[1] Raspberry Pi Computer Vision Programming | by Ashwin Pajankar

[2] Beginning Robotics with Raspberry Pi and Arduino | by Jeff Cicolani

[3] SELF DRIVING CAR | by Mit Patel

[4] Learn Computer Vision Using OpenCV | by Sunila Gollapudi

[5] Programming Computer Vision with Python | by Jan Erik Solem

WEBOGRAPHY:

 [1] https://www.encyclopedia.com/computing/news-wires-white-papers-and-books/digital-

images#:~:text=A%20digital%20image%20is%20a,called%20pixels%20(picture%20element

s). Consulted on 02/05/2022

[2] https://www.javatpoint.com/dip-types-of-images Consulted on 10/05/2022

[3] https://guides.lib.umich.edu/c.php?g=282942&p=1885348 Consulted on 10/05/2022

[4] https://www.v7labs.com/blog/computer-vision-applications Consulted on 15/05/2022

[5] https://opencv.org/about/ Consulted on 15/05/2022

[6] https://docs.opencv.org/4.x/index.html Consulted on 12/05/2022

[7] https://cutt.us/kqyyX /Good Calculators / Consulted on 22/05/2022

[8] https://iq.opengenus.org/gaussian-blur/ Consulted on 26/05/2022

[9] https://justin-liang.com/tutorials/canny/ Consulted on 26/05/2022

[10] https://cutt.us/nu5Ia /Geeks for Geeks / Consulted on 05/06/2022

[11] https://cutt.us/kZ7e6 / Consulted on 19/05/2022

https://www.javatpoint.com/dip-types-of-images
https://guides.lib.umich.edu/c.php?g=282942&p=1885348
https://www.v7labs.com/blog/computer-vision-applications%20Consulted%20on%2012/05/2022%20Consulted%20on%2015/05/2022
https://opencv.org/about/
https://docs.opencv.org/4.x/index.html%20Consulted%20on%2012/05/2022
https://cutt.us/kqyyX%20/Good%20Calculators%20/%20Consulted%20on%2022/05/2022
https://iq.opengenus.org/gaussian-blur/
https://justin-liang.com/tutorials/canny/
https://cutt.us/nu5Ia%20/Geeks%20for%20Geeks%20/%20Consulted%20on%2005/06/2022
https://cutt.us/kZ7e6%20/

