
 PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

MINISTERY OF HIGHER EDUCATION AND SCIENTIFIC RESARCH

University Mohamed El-Bachir El-Ibrahimi - Bordj Bou Arreridj

Faculty of Sciences & technology

Department of Electronics

 Report
 End of Cycle Project (PFC)

MCIL 3

FIELD : ELECTRONICS

Speciality : Electrical industrial

By

ZIOUAR Hamza

SAIDI Adel

Entitled

Presented on : 26/06/2022

Before the Jury composed of :

Name & surname Grade Quality Establishment

M.YOUSFI. A

M. DJELLAL D

Dr

MAA

President

Examiner

Univ-BBA

Univ-BBA

Mrs. HAMADACHE Fouzia MAA Supervisor Univ-BBA

Academic Year 2021/2022

Implementation of basic image processing

algorithms using Xilinx System Generator

 ملخص

على مكتبات ضرورية اكسلينيكس. يحتوي مولد نظام اكسلينيكسطريقة معالجة الصور باستخدام مولد نظام المذكرةقدم هذا ت

يركز تقريره في هذا العمل. يتم استخدام نهجماتلاب سيمولينك لمساعدة أنواع مختلفة من الخوارزميات. تم دمجه مع بيئة

الصور الأساسية على أداة FPGAعلى تنفيذ خوارزميات معالجة Xilinx System Generator (XSG)باستخدام

للعديد من خوارزميات معالجة الصور مثل اللون إلى التدرج الرمادي واللون HDLالقوية. لقد قمنا بنمذجة ومحاكاة نموذج

من خلال تجميع FPGAتم تنفيذ النماذج على . XSGاين ، وعتبة الصورة باستخدام للصور السلبية ، والتعزيز ، وتمدد التب

 لمحاكاة الأجهزة.

 محاكاة الأجهزة. ، FPGA ، XSG: خوارزميات معالجة الصور ، الكلمات الرئيسية

Abstract

This report focuses on the implementation of basic image processing algorithms on FPGA

using the powerful Xilinx System Generator (XSG) tool. We have modeled and simulated the

HDL model of various image-processing algorithms such as color to grayscale and color image

negative, enhancement, contrast stretching and image thresholding using XSG. The models

have been implemented on FPGA by a compilation for hardware Co-Simulation.

Keywords: Image-processing algorithms, FPGA, XSG, Hardware Co-simulation.

Résumé

 Le présent mémoire porte sur l'implémentation d'algorithmes de base du traitement d'images

sur FPGA à l'aide du puissant outil Xilinx System Generator (XSG). Nous avons modélisé et

simulé le modèle HDL de divers algorithmes de traitement d’images tels que conversion

d'images couleur en niveaux de gris, amélioration d’images, seuillage, etc à l'aide de XSG. Le

modèle a été implémenté sur FPGA par une compilation pour une Co-Simulation matérielle.

Mots-clés : algorithmes de traitement d’images, FPGA, XSG, Hardware Co-simulation..

ACKNOWLEDGMENTS

First of all, we would like to express our

gratitude to almighty Allah for his blessings,

strength and ability to understand, learn and

write this research. This thesis becomes reality

with the kind support and help of many

individuals.

 We would like to express our sincere gratitude

to our supervisor Md. Fouzia Hamadache, for

her guidance, enthusiastic supervision, constant

advice, and encouragement throughout the

course of this research.

We are highly grateful to all our teachers for

their patience and knowledgeable lectures. And

my mom “aicha berrani” hamza and “yassine

saadi” Special thanks go to the jury members

and “Moussa MCIL5”for their precious time

reading and analyzing our work. Our thanks

and appreciations also go to our colleagues and

people who have helped us out with their

abilities.

TABLE OF CONTENTS

INTROCTION 01

CHAPTER 01. Basic Image processing Algorithm

 1.1 Introduction 2

 1.2 Definition and representation of an image 2

 1.3 Types of images 2

 1.3.1 Color image 2

 1.3.2 Grayscale image 3

 1.3.3 Binary image 4

 1.4 Basic image processing operations 4

 1.4.1 Conversion of color image to grayscale 5

 1.4.2 Convert grayscale image to black and white image (thresholding) 6

 1.4.3 Image negative 7

 1.4.4 Image enhancement 7

 1.4.5 Algorithm for contrast stretching 8

 1.5 Conclusion 8

Chapter 02. Image processing algorithms using xilinx systeme generator (XSG)

 2.1 Introduction 9

 2.2 Xilinx System Generator 9

 2.3 Image processing algorithms with xilinx system generator 9

 2.4 Main Blocks 10

 2.4.1 System Generator token 10

 2.4.2 Blocs Gateway In & Gateway Out 11

 2.4.3 Source image 11

 2.4.4 Image Pre-Processing blocks 12

 2.4.5 Image post Processing blocks 13

 2.5 Image processing algorithm 14

 2.5.1 Algorithm For Image negative 14

 2.5.2 Algorithm for contrast stretching 16

 2.5.3 Algorithm for thresholding 17

 2.5.4 Algorithm for image enhancement 18

 2.6 NI Digital Electronics FPGA Board Hardware Platform 20

 2.7 FPGA XC3S500E Xilinx Spartan-3E 21

2.8 Hardware Co-Simulation 22

2.9 Hardware result 24

2.10 Conclusion 25

CONCLUSION 26

References

1

LIST OF FIGURES

Chapter 1 : Basic Image Processing Algorithms.

Figure 1.1 : Image and digital image 2

Figure 1.2 : Color scheme 3

Figure 1.3 : Gradation of value from black to white 4

Figure 1.4 : Image black and white 4

Figure 1.5 : Result obtained from image conversion to grayscale. 6

Figure 1.6 : Result obtained from converting image to black and white 6

Figure 1.7 : Result obtained from Grayscale Negative 7

Figure 1.8 Result obtained from image enhancement 8

Figure 1.9 Result obtained from contrast stretching 8

Chapter 2 : Image processing algorithms using xilinx systeme generator (XSG)

Figure 2.1: Design of Image Processing Lab on XSG 10

Figure 2.2: Block parameters image source 11

Figure 2.3: images color and grayscale use in simulation 11

Figure 2.4.: Pre-Processing Block Diagram 12

Figure 2.5: Post-Processing Block Diagram 12

Figure 2.6: Algorithm for Gray Scale Image Negative 13

Figure 2.7: Result for Gray Scale Image Negative 13

Figure 2.8: Algorithm for Color Image Negative 14

Figure 2.9: Result for Color Image Negative 14

Figure 2.10: Algorithm for Contrast Stretching grayscale 14

Figure 2.11: Result for Contrast Stretching grayscale 15

Figure 2.12: Algorithm for Contrast Stretching color image 15

Figure 2.13: Result for Contrast Stretching color image 16

Figure 2.14: Algorithm for thresholding grayscale 16

Figure 2.15: Result for thresholding grayscale 16

Figure 2.16: Algorithm for Color Image thresholding 17

Figure 2.17: Result for Color Image Thresholding 17

Figure 2.18: Algorithm for grayscale Image Enhancement 18

Figure 2.19: Result for Grayscale Image Enhancement 18

Figure 2.20: Algorithm for Color Image Enhancemnet 18

Figure 2.21: Result for Color Image Enhancement 19

Figure 2.22: Plateforme matérielle NI Digital Electronics FPGA 19

Figure 2.23: FPGAXC3S500E circuit marking. 20

Figure 2.24: compilation co-simulation 21

Figure 2.25: Hardware co-simulation block 22

Figure 2.26: System Generator project for simulation 23

Figure 2.27: Image negative grayscale 23

Figure. 2.28. Hardware software Co-simulation for the grayscale image negative 24

2

Figure 2.28: Image negative grayscale using JTAG 24

INTRODUCTION

1

Research in the field of image processing and analysis has been evolving rapidly over the

last decade. Nowadays, image processing has various applications in the fields of medical

imaging, meteorology, computer vision, microscopy, etc. [1]. Image processing on FPGAs is

complicated because of the need to use separate architectures for image processing. Matlab,

Simulink and Xilinx System Generator tools, which convert the image into appropriate formats

supported by the FPGA, are used to facilitate these operations. XSG provides a powerful tool

for designing, testing and implementing models on embedded systems [2].

To move from a model built with Simulink to a hardware model, System Generator offers

a hardware/software co-simulation that allows to build a hardware version of the model and

to use the Simulink simulation environment to validate the system functionality in hardware.

The present work consists in implementing, on FPGA, the basic image processing

algorithms using the powerful Xilinx System Generator (XSG) tool under Simulink.

This thesis is organized as follows:

The first chapter details the basic image processing algorithms, image enhancement,

thresholding, contrast stretching, etc. in order to model them under Simulink.

The second chapter is devoted to the modeling of the image processing algorithms using

the XSG tool, to the simulation of the HDL model under the Simulink environment and finally

to its implementation on FPGA using a compilation for a hardware Co-Simulation.

Finally, as a general conclusion, we synthesize the work and we identify the avenues of

reflection.

Basic Image

Processing Algorithms

 CHAPTER 1 BASIC IMAGE PROCESSING ALGORTHMS

2

1.1 Introduction

Image processing can be defined as the set of methods and strategies operating on the

image in order to extract the most relevant information or simply promote to provide a picture

in addition to noticeable to the human eye.

In this chapter we present some basic thoughts of the field of digital image processing

such as: image definition, image types, image characteristics, image processing system,

elementary algorithms and in blade some concrete examples of image processing.

I.2 Definition and representation of an image

The definition of the term "image" itself, as given by the Petit Robert, encompasses a

multitude of distinct meanings. It goes from the "exact reproduction or analogical

representation of a being, of a thing", to the "mental representation of sensitive origin". The

image is a visual representation of something (object, living being, concept...).[1].

A digital image is a table of colored points (pixels). For example, a basic computer screen

displays 1024 pixels in width and 768 pixels in height.

The digital image is represented as a two-dimensional array containing integer values [1].

Figure 1.1 Image and digital image

1.3 Types of images

There are three types of images, which are as follows:

 CHAPTER 1 BASIC IMAGE PROCESSING ALGORTHMS

3

1.3.1 Color image

In a color image each pixel has a standard color described by the quantity of these 3

components: red (R), green (G) and blue (B), each of these colors is coded on the interval [0,

255]. The combination of these three colors gives a point of light (a pixel) of a certain color.

So the RGB system is one way to describe a color in computing. Standard example: The trio

{255, 255, 255} will give white, {255, 0, 0} a pure red, {100, 100, 100} a gray, and so forth. The

first number gives the red component, the second the green component and the last the blue

component [2].

 The coding of the color is carried out on three bytes, each byte representing the value of a

color component by an integer from 0 to 255. These three values generally code the color in

the RGB space. The number of different colors which can be thus represented is 256 x 256 x

256 possibilities, that is to say nearly 16 million colors. As the difference of nuance between

two very close but different colors in this mode of representation is almost imperceptible for

the human eye, one considers conveniently that this system allows an exact restitution of the

colors, this is why one speaks about "true colors".

Figure I.2: color scheme

1.3.2 Grayscale image

One codes here only the level of the luminous intensity, generally on a byte (256 values).

By convention, the value zero represents the black (null luminous intensity) and the value 255

the white (maximum luminous intensity).

This process is frequently used to reproduce photographs in black and white or text

under certain conditions (with use of a filter to soften the contours in order to obtain

smoother characters). The color of the image pixel has gray level can take values ranging from

 CHAPTER 1 BASIC IMAGE PROCESSING ALGORTHMS

4

black

to

white

through a finite number of intermediate levels so the values between 0 and 255. (0 is black).

[2]

Figure 1.3 Gradation of values from black to white

1.3.3 Binary image

A binary image is an image for which each pixel can only have a value of 0 or 1. The

manipulation of such images is full of specialized tools and mathematical theories for several

reasons:

The beginnings of digital image processing did not allow the processing of complex

images (problem of computing time, available memory space and quality of output devices).

Moreover, the first applications around 1950 were well adapted to this type of images.

 Binary images are a simple context allowing a mathematical formalization of problems

by tools such as topology. In the field of industrial vision (defect detection, quality control,

measurement, ...) we often consider the binary image as a necessary step, usually following

the segmentation phase. Binary image contains with only 2 possible values: each pixel has

value that 0 for black or 1 for white [2].

 CHAPTER 1 BASIC IMAGE PROCESSING ALGORTHMS

5

Figure 1.4 Image black and white

1.4 Basic image processing algorithms

In images, we generally perform operations pixel by pixel: addition, subtraction,

multiplication, division, linear combination, ... with those of the map using a linear

homogeneous transformation (translation, homothety, rotation, projection).

Image processing is a method to perform some operations on an image, in order to get

an enhanced image or to extract some useful information from it. It is a type of signal

processing in which input is an image and output may be image or characteristics/features

associated with that image. Nowadays, image processing is among rapidly growing

technologies.

Analogue and digital image processing are the two types of image processing methods

employed. Hard copies, such as prints and photographs, can benefit from analog image

processing. When applying these visual techniques, image analysts employ a variety of

interpretation fundamentals. Digital image processing techniques allow for computer-assisted

alteration of digital images. Pre-processing, augmentation, and presentation, as well as

information extraction, are the three general processes that all sorts of data must go through

when employing digital technology.

1.4.1 Conversion of color image to grayscale

 Converting a color image to a grayscale image with important details is a difficult task. The

contrast, sharpness, shading, and structure of color images might be lost when converted to

grayscale. A novel algorithm is presented to preserve the contrast, sharpness, shading, and

structure of color images. The new technique conducts an RGB approximation to convert a

color image to grayscale, lowering and enhancing chrominance and brightness. The grayscale

images produced by the algorithm in the studies demonstrate that the system keeps

 CHAPTER 1 BASIC IMAGE PROCESSING ALGORTHMS

6

important color attributes as contrast, sharpness, shadow, and color structure. [3]. Color

images are transformed to grayscale based on the color of each pixel containing red (R), green

(G), and blue (B) to reduce processing time [4],[5].

 The RGB image is converted to a grayscale image according to the following equation:

 Y=0.3*R + 0.59*G + 0.11*B (1)

Figure 1.5 Result obtained from image conversion to grayscale.

1.4.2 Convert grayscale image to black and white image (thresholding)

Replaces all pixels in the input image that are brighter than the level with the value 1

(white) and all other pixels with the value 0 (black) to convert a grayscale image to a binary

image [6]. For each pixel, the rule can be utilized to create a binary decision.[7]

 𝐹(𝑥, 𝑦) = {1 𝑖𝑓 𝑓(𝑥, 𝑦) > 𝑇𝑥𝑦 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

Where Txy is the threshold assigned to location (x, y) in the image f(x,y)

 CHAPTER 1 BASIC IMAGE PROCESSING ALGORTHMS

7

Figure 1.6 Result obtained from converting image to black and white.

1.4.3 Image negative

 A negative image has light portions that appear dark and dark areas that appear light.

Inverting a negative color image causes red parts to look as cyan, greens to appear as magenta,

and blues to appear as yellow, and vice versa. Film negatives contain less contrast than final

printed positive photos, but a larger dynamic range. When printed on photographic paper, the

contrast usually rises. When scanning film negatives into the digital domain, the contrast can

be altered at the time of scanning or, more broadly, during post-processing [7]

 𝐹(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 255 (3)

 𝑖𝑓 𝐹(𝑥, 𝑦) < 0 ⟹ 𝐹(𝑥, 𝑦) = 0 (4)

 𝑖𝑓 𝐹(𝑥, 𝑦) > 255 ⟹ 𝐹(𝑥, 𝑦) = 255 (5)

 CHAPTER 1 BASIC IMAGE PROCESSING ALGORTHMS

8

Figure 1.7 Result obtained from Grayscale Negative

1.4.4 Image enhancement

 For human viewers, image enhancement increases the interpretability or perception of

information in images. Images can be enhanced by adding some constant values to it. [7]

 𝐹(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (6)

Where constant is a number between 0 and 255

Figure 1.8 Result obtained from image enhancement

1.4.5 Algorithm for contrast stretching

 The upper and lower pixel values for the image to be normalized must be specified before

stretching may begin. Typically, these limits are simply the minimum and maximum pixel

values permitted for the image type in question. For an 8-bit grayscale image, the lower and

upper boundaries can be 0 and 255, respectively. Contrast stretching is the process of altering

an image's contrast or luminosity characteristics.|7]. Grayscale image is stretched according

to the equation.

 CHAPTER 1 BASIC IMAGE PROCESSING ALGORTHMS

9

 𝑁𝑒𝑤_𝑝𝑖𝑥𝑒𝑙 = 3(𝑜𝑙𝑑 𝑝𝑖𝑥𝑒𝑙 − 127) + 112 . (7)

New_pixel is its result after the transformation.Values below 0 are set to 0 and values about

255 are se t to 255.

 Figure 1.9 Result obtained from contrast stretching

1.5 Conclusion

In this chapter we have detailed the basic image processing algorithms to model them in

Simulink in the next chapter.

Image processing

algorithms using Xilinx

System Generator

(XSG)

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

9

2.1 Introduction

Image processing is used to transform images in order to improve their quality and

extract useful information. The need to process the image in real time, which leads to the

implementation at the hardware level, which offers parallelism, and therefore significantly

reduces processing time. Xilinx System Generator, a modeling and design tool that provides

all the tools for easy graphical simulation in Simulink [8].

In this chapter, we focus on the implementation of various image processing algorithms

such as negative generation, image enhancement, contrast stretching, image thresholding

using the Xilinx System Generation (XSG) tool and transferring the design to the FPGA through

Hardware Co-Simulation.

2.2 Xilinx System Generator

Xilinx System Generator is a Xilinx DSP configuration instrument that allows to use the model-

based MATLAB/Simulink plan for execution in FPGA [9]. There are many DSP blocks that are

adders, multipliers, registers, error revision blocks, FFTs, channels and memories in the Xilinx

DSP blockset for Simulink. The general system DSP block graph is fully switched to RTL [10].

Xilinx System Generator (XSG) is an FPGA integrator design environment (IDE) that leverages

Simulink as a development environment and presents as a block set. It features an integrated

design flow that allows you to jump right to the configuration file (*.bit) needed to program

the FPGA. This tool also allows hardware co-simulation used to test user-created cores on the

target hardware simultaneously with the model present in the Simulink environment [11].

2.3 Image processing algorithms with xilinx system generator (XSG)

The XSG library includes a series of essential function blocks, typically used in FPGA target

programming. The following figure illustrates the model of image processing algorithms

developed with XSG.

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

10

Figure. 2.1. Image processing algorithms using XSG

The entire operation for any image processing technique using Simulink and Xilinx blocks

mainly goes through four phases such as image, preprocessing, algorithms and post

processing.

2.4 Main blocks

The essential blocks in all algorithm designs in XSG are as follows:

2.4.1 System generator token

The System Generator token serves as a control panel for the simulation system and

parameters. It's also used to start the netlisting code generation. At least one System

Generator token must be present in every Simulink model that contains a Xilinx blockset

element. at least one token from the System Generator It is possible to describe how code

generation and simulation should be handled once a System Generator token has been added

to a model [12]. The symbol and dialog box of the "System Generator" block are shown in the

following figure:

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

11

Figure. 2.2. Symbol and dialog box of the System Generator token.

2.4.2 Blocs Gateway In & Gateway Out

The Gateway In from Xilinx is an input block in the Xilinx part of the Simulink design. This

block converts Simulink data types (integers, doubles) to the System Generator fixed-point

type in one hand and in another hand, the gateway Out block is the output from the Xilinx

part of a Simulink design. This block converts the System Generator's fixed-point or floating-

point data type to a Simulink data type [12].

Figure. 2.3. Gateway In &Gateway Out

2.4.3 Source image

Image matrix is delivered by the block 'Image From file' which allows to import the image for

processing. We choose grayscale image “kids.tif ” and color image “ onion.png ”.

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

12

Figure. 2.4. Block parameters image source

The following are the images chosen for implementation using XSG.

Figure. 2.5. Images color and grayscale use in simulation

2.4.4 Image Pre-processing Blocks

Because the image is a two-dimensional (2D) layout, it must be preprocessed and supplied as

a one-dimensional (1D) vector to match the hardware requirements. Preprocessing images in

Matlab helps to provide data to FPGA as a specific test vector matrix suitable for FPGA

Bitstream compilation using the system generator [13]. To process a 2D image, it is first

transposed and then converted to 1D using the 2D to 1D conversion block. The frame

conversion block maps the output signal into frame-based data and delivers it to the debuffing

block, which then converts that frame into scalar samples at a higher sampling rate |7]. Figure

3.2 depicts the model-based design for image pre - processing stage

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

13

Figure. 2.6. Pre-Processing Block Diagram for grayscale image

We add matrix concatenate and Reshape blocks to achieve pre-processing of color image.

Figure. 2.7. Pre-Processing Block Diagram for color image

2.4.5 Image post processing blocks

Image post-processing is used to recreate the image from a 1-D vector. It consists of four

blocks: data type conversion, buffer, convert 1-D to 2-D and transpose [12,13]. The first

block encodes the image signal as an unsigned integer. In the second block, scalar samples

are converted to frame output at a reduced sampling rate. The third block converts a one-

dimensional image signal to a two-dimensional image matrix. The output image is

transposed in the final block. The Image Post-processing processes are depicted in block

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

14

diagram in Figure 2.7.

Figure. 2.8. Post-Processing Block Diagram for grayscale image

Figure. 2.9. Post-Processing Block Diagram for color image

2.5 Image processing algorithms

We aim to implement image processing algorithms using Xilinx System.

2.5.1 Algorithm for image negative

To construct the negation or inverse of an input image, the AddSub block directlly

subtracts the constant 255 from the pixel value. Figure 2.10 shows the XSG design of

Gray Scale Image Negative. The result of this algorithm is shown in Figure 2.11.

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

15

Figure. 2.10. XSG design of grayscale image negative

Figure. 2.11. Result for grayscale image negative

Figure 2.12 shows the XSG design of color Image Negative. The result of this algorithm is

shown in Figure 2.13.

Figure. 2.12. XSG design of color image negative

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

16

Figure. 2.13. Result for color image negative

2.5.2 Algorithm for contrast stretching

Contrast stretching is the process of altering an image's contrast or luminosity

characteristics. The basic algorithm is described below. It can be achieved by employing a

constant multiplier and AddSub blocks [8]. Figures 2.14 and 2.15 show the contrast

stretching algorithm and results for gray scale image.

Figure. 2.14. XSG design of contrast stretching grayscale image

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

17

 Figure. 2.15. Result for contrast stretching grayscale

Contrast stretching for color images stretches the intensity, tint, and saturation values for each

pixel in an image for each R, G, and B signal. [6] Figures 2.16 and 2.17 show the contrast

stretching algorithm and results for color image.

Figure. 2.16. XSG design of contrast stretching color image

Figure. 2.17. Result for contrast stretching color image

2.5.3 Algorithm for thresholding

The process of making all pixels over a given level of white threshold while others are black is

known as thresholding. A suitable constant 55, is utilized to implement the method, and a

Mux is used to replace the pixel with white or black [7].

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

18

Figure. 2.18. XSG design of thresholding grayscale image

Figure. 2.19. Result for thresholding grayscale image

2.5.4 Algorithm for image enhancement

By merely adding a little illumination to some photographs, they can be improved for

perception. The one-dimensional image signal is resolved for grayscale images, and the R|G|B

multidimensional image signals are resolved similarly for color images [13].

Figure. 2.20. XSG design of grayscale image enhancement

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

19

Figure. 2.21. Result for grayscale image enhancement

A similar approach is used to resolve multidimensional R|G|B image signals for color images.

Figure. 2.22. XSG design of color image enhancemnet

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

20

Figure. 2.23. Result for color image enhancement

2.6 NI Digital Electronics FPGA Board Hardware Platform

The hardware platform used in this project is NI Digital Electronics FPGA Boardest a circuit

development platform based on the FPGA XC3S500E Xilinx Spartan-3E. The figure below

shows the reference diagram of the top view of the NI Digital Electronics FPGA board.

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

21

Figure. 2.24. NI Digital Electronics FPGA Board.

2.7 FPGA XC3S500E Xilinx Spartan-3E

The FPGA XC3S500E Xilinx Spartan-3E is a Plastic Leaded Chip Carrier (PLCC) type integrated

circuit with the following case marking:

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

22

 Figure. 2.25. FPGA XC3S500E

The marking information is:

2.8 Hardware co-Simulation

The complete module should be transformed to an FPGA synthesizable one in order to

implement this design in an FPGA board. The core module for any image processing is adapted

for JTAG hardware co-simulation with the help of the System generator token. A new window

will popup when you click the system generator token, as shown in Figure 2.26. After this block

is configured for the target platform Digital Electronics FPGA and the Spartan 3E (XC3S500E-

4FT256) is used for board level implementation in this project. A hardware co-simulation block

will be constructed after pressing the generate button in the System generator block.

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

23

Figure. 2.26. Compilation co-simulation and code generation

The module for image negative is converted to JTAG hardware co-simulation.

Figure. 2.27. Hardware Co-simulation block for grayscale image negative

The hardware co-simulation block was added to the design to do the hardware software co-

simulation, and we can now see FPGA and XSG/software output at the same time. Figure 3.9

depicts the whole architecture for Blurring/Filtering, including the hardware and software co-

simulation design.

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

24

Figure. 2.28. Hardware software Co-simulation for the grayscale image negative

2.9 Hardware result

When the system design is simulated in Simulink, the compiled component of the result is

calculated in actual FPGA hardware, which typically results in a substantially faster simulation

time while proving the hardware's functional correctness. Hardware implementation of

grayscale image negative for “cameraman.tif” is tabulated below.

Figure. 2.29. Hardware result of grayscale image negative using JTAG Co-simulation block

 CHAPTER 2 Image processing algorithms using Xilinx System Generator (XSG)

25

2.10 Conlusion

 In this chapter, we modeled the basic image processing algorithms with the XSG tool and

then simulated the model and subsequently transferred the design to FPGA using Xilinx's

Hardware Co-Simulation. Finally, the algorithms were validated on the Digital Electronics FPGA

Board (DEFB) development platform. we conclude that the Xilinx system generator is an

incredibly useful tool for programming and hardware image processing tasks.

CONCLUSION

26

 The purpose of this study is to implement the basic image processing algorithms on an

FPGA platform using a compilation for hardware co-simulation.

We have modeled and simulated the image processing algorithms starting with

grayscale and color image negative, contrast stretching, enhancement and image thresholding

using the powerful tool Xilinx System Generator XSG. This tool offers the possibility to use the

high-level abstraction language of MATLAB and the graphical blocks of Simulink and Xilinx

simultaneously. Indeed, the latter also provides a hardware Co-Simulation allowing the direct

incorporation of the design running in an FPGA in a Simulink simulation as well as the transfer

of the design to the FPGA.

In conclusion, we can say that the Xilinx System Generator provides simplicity and ease

for hardware implementation and offers fast means for hardware implementation of complex

techniques used for image processing.

References

[1] KHADRAOUI-MESMARI-HANED -Mémoire de MASTER -UNIVERSITE KASDI MERBAH OUARGLA

[2] Polycopié de cours 1 Université Ferhat Abbas — Sétif

[3] abstract of 2010 Second International Conference on Computer Engineering and Applications < Color

Image to Grayscale Image Conversion >

[4] S. R. A. S. J.C.Moctezuma, "Architecture for filtering images using Xilinx System Generator," World

Scientific Advanced Series In Electrical And Computer Engineering, Proceeding of the 2nd WSEAS

International Conference on Computer Engineering and Applications, pp. 284-289, 2008.

[5] M. Ownby and M. W.H, "A Design Methodology for Implementing DSP with Xilinx System Generator

for Matlab," IEEE International Symposium on System Theory., pp. 404-408, 2003.

[6] Matlab guide de l'utilisateur

[7] Kumar, K. A., & Kumar, M. V. (2014). Implementation of image processing lab using Xilinx System

Generator. Advances in Image and Video Processing, 2(5), 27-35.

[8] Durgakeri, B. S., & Chiranjeevi, G. N. (2019, May). Implementing Image Processing Algorithms using

Xilinx System Generator with Real Time Constraints. In 2019 4th International Conference on Recent

Trends on Electronics, Information, Communication & Technology (RTEICT) (pp. 230-234). IEEE.

[9] A. K. Jain, “Fundamentals of digital image processing,” Englewood Cliffs, NJ: Prentice Hall, 1989.

 [10] S. Martins and J. C. Alves, “A high-level tool for the design of custom image processing systems,”

[11] Suthar, A. C., Vayada, M., Patel, C. B., & Kulkarni, G. R. (2012). Hardware software co-simulation for

image processing applications. International Journal of Computer Science Issues (IJCSI), 9(2), 560.

 [12] System Generator for DSP Reference Guide UG638 (v14.5) March 20, 2013.

[12] Raut, N. P., & Gokhale, A. V. (2013). FPGA implementation for image processing algorithms using

xilinx system generator. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP), 2(4), 26-36.

[14] Dakre, K. A., & Pusdekar, P. N. (2015). Image enhancement using hardware co-simulation for

biomedical applications. International Journal on Recent and Innovation Trends in Computing and

Communication, 3(2), 869-877.

