

People's Democratic Republic of Algeria

Ministery of Higher Education and Scientific Research

Mohamed El Bachir El Ibrahimi University of Borj Bou Arreridj

Faculty of Mathematics and Informatics

Informatics Department

DISSERTATION

Presented in fulfillment of the requirements of obtaining the degree

Master in Informatics

Specialty: Networks and Multi Media

THEME

A Hybrid Ant Colony Optimization for Multidepot

Vehicle Routing Problem

Presented by :

Abderrahim BOUTALBI

Saber BENNIA

Publicly defended on:

In front of the jury composed of:

President: NOUIOUA Farid

Examiner: BOUTOUHAMI Sara

Supervisor: SAHA Adel

2021/2022

ii

Dedications I

This thesis is dedicated to

The sake of Allah, my Creator and my Master,

My great teacher and messenger, Mohammed (May Allah bless and grant him), who taught

us the purpose of life,

The University Mohamed El Bachir El Ibrahimi; my second magnificent home;

My great parents, who never stop giving of themselves in countless ways,

My dearest grand mather, who leads me through the valley of darkness with the light of hope

and support,

My beloved sisters; particularly my dearest brother, Mouhamed, who stands by me when

things look bleak,

My beloved friends: Islem , and Sofaine, whom I can't force myself to stop loving. To all my

family, the symbol of love and giving,

My friends who encourage and support me,

All the people in my life who touch my heart, I dedicate this research

iii

Dedications II

I dedicate this modest work in principle to the closest people

of my life ; my father and my mother who were present for me

throughout my education and my life, but above all who have

always knew how to find the words that encouraged me

and who pushed me to go forward

The University Mohamed El Bachir El Ibrahimi; my second magnificent home;

I also dedicate this work to all my family who were always behind me.

to strengthen me during my difficult moments, in particular:

 My brothers: AHMED, KHALED

I also want to dedicate this work to my dear friends who have never forgotten us and who

were there when needed: hocine, otmane, sofiane

 Finally to all the people who are dear to me and whom I love.

saber

iv

Acknowledgment I

All praise and thanks are only for Allah, the One who, by his blessing and favor, perfected

goodness good works are accomplished

In completing this project successfully, a lot of people helped me. I would like to thank all

those involved in this project.

First of all, I would like to thank God for his ability to successfully complete this project.

Then I will thank my supervisor SAHA Adel for his efforts during this work, I would like to

thank my friend Eng. Sofian METTAI who taught me a lot about this project by guiding me. His

suggestions and guidance helped accomplish this course.

v

Acknowledgment II

First of all, I would like to thank God.

I thank the Almighty and the Merciful, who gave me life and strength, as well as the courage and

audacity to overcome all the difficulties, to have followed and accomplished all the stages of my

studies.

Secondly, I would like to thank my supervisor, Saha Adel, for having assisted me and helping

me with their precious advice and for having offered me all the possibilities, such as following

and providing the necessary documentation for the realization of my thesis study.

Finally, I would also like to thank all my friends and

My colleagues who assist me directly or indirectly in realizing

This work

vi

Abstract

In this thesis, we proposed a hybrid Ant Colony Optimization for Multi Depot Vehicle Routing

Problem using the Nearest Distance Cluster Algorithm, 2-opt and mutation operation in order to

Gain the distance and thus reduce the cost in general with the condition of the limited capacity of

vehicles

Key words: HACO, ACO, VRP, hybrid Algorithm.

Résumé

Dans ce mémoire, nous avons proposé une optimisation hybride de colonies de fourmis pour

le problème de routage dynamique de véhicules multi dépôts à l'aide de l'algorithme de cluster de

distance la plus proche, Opération d'échange local (2-opt) et opération de mutation afin de Gagner

de la distance et ainsi réduire le coût en général avec la condition de la capacité limitée des

véhicules

Mots clés : OCFH, OCF, PTV, Algorithme hybride.

 ملخص

، اقترحنا تحسينًا هجينًا لمستعمرة النمل لمشكلة توجيه المركبات الديناميكية متعددة النقاط باستخدام خوارزمية هذه المذكرةفي

(وعملية الطفرة من أجل كسب المسافة وبالتالي تقليل التكلفة بشكل عام opt-2أقرب مسافة للمجموعة ، عملية التبادل المحلي)

 الاعتبار السعة المحدودة للمركباتمع اخذ بعين

 الكلمات المفتاحية: تحسين مستعمرة النمل الهجين ، تحسين مستعمرة النمل ، مشكلة توجيه المركبة ، الخوارزمية الهجينة

vii

Abreviations list

NP: Nondeterministic polynomial (not deterministic polynomial time)

MILP: Linear program in mixed variables (Mixed Integer Linear Problem)

PLI: Linear program in continuous variables (Integer Linear Program)

0- 1ILP: Linear program in binary variables (0-1 Integer Linear Program)

Cop: Combinatorial optimization problems

ACO Ant Colony Optimization (Algorithm)

TSP Travelling Salesmen Problem

H-ACO Hybrid-Ant Colony Optimization (Algorithm)

CMDVRP Capacitated Multi Depot Vehicle Routing Problem considering

CVRP Capacitated Vehicle Routing Problem

VRPTW Vehicle Routing Problem Time Windowed

VRPPD Vehicle Routing Problem with pick-up and delivery

GSP Group-shop Scheduling Problem

PFSP Permutation Flow Shop Problem

FAP Frequency Assignment Problem

MDVRP Multi Depot Vehicle Routing Problem

PSO Particle Swarm Optimization (Algorithm)

GA Genitic Algorithm

2-opt Two arc optimizations (Algorithm)

viii

VRP : Vehicle Routing Problem

List of contents

Dissertation 1

General Introduction 2

Chapter 01: Combinatorial optimization 3

1. 1. Introduction 3

1.2. Optimization: 3

1.2.1. Definition of optimization 3

1.2.2. Combinatorial optimization 4

1.2.3. Examples of optimization problems: 4

1.2.3.1. Backpack problem 4

1.2.3.2. Assignment problem 5

1.2.3.3 Traveling salesman problem 7

1.2.3.4. Scheduling problem 9

1.3. Combinatorial optimization problems resolution methods 11

1.3.1. Exact methods 11

1.3.1.1. dynamic programming 12

1.3.1.2. Branch & Bound 12

1.3.1.3. polyhedral methods 12

1.3.2. Approximate methods 13

Chapter 02: Vehicle Routing problems and their variants 15

2.1. Introduction 15

2.2. Some vehicle routing problem variants 15

ix

. multi-depot vehicle routing problem MDVRP 17

Description of MDVRP: 17

Formulation of MDVRP: 17

. Conclusion 19

Chapter 03: Ant Colony Optimization Algorithm 21

3.1. Introduction 21

3.2 The origins of ant colony optimization 22

3.3From Real to Artificial ant: 25

3.4 Differences between real ants and artificial ants: 25

3.5 ACO (ant colony optimization) 26

3.5.1 Description: 26

3.5.2 Biological ACO ant colony optimization: 27

3.5.3 metaheuristic ACO algorithm and formulation: 30

3.5.3.1Basic ACO formulation 30

3.5.3.1.1) Pheromone update: 31

3.5.4 Some problems resolved with ant colony optimization ACO 32

3.6 Conclusion: 32

Chapter 04: Hybrid Ant Colony Optimization for Multi depot Vehicle Routing 34

4.1 A Hybrid Ant Colony Algorithm for MDVRP [1] 34

4.1.1 Hybrid Ant Colony Optimization 34

4.1.2. The Nearest Distance Cluster Algorithm. 34

4.1.3 Generate Initial Solutions. In ACO 35

4.2 Optimization process [1] 35

4.2.1. Local Interchange Operation 2-opt 35

4.3. Update of Pheromone Information. 36

4.6. Conclusions 36

Chapter 05: Implementation and results 38

x

5.1. Introduction 38

5.2.MATLAB Programming language and Environment 38

5.3 Execution & Results: 40

5.3.1. The effect of changing the relative influence of the pheromone trails 𝛼 on the results

 40

5.3.2. The effect of changing the visibility of edges 𝛽 on the results 46

5.3.3. The effect of changing the evaporation rate 𝜌 value on the results: 48

5.3.4. The effect of changing the control variable pf pheromone generation Q value on the

results 50

5.3.5. The effect of changing the initial pheromone 0 on the results: 53

5.3.6. The effect of changing the capacity of vehicle on the results: 55

5.3.7. The effect of itteration number on the results 61

5.5 conclusion 63

General conclusion & Perspectives 64

References 65

List of tables

Table 2. 1: Vehicle routing problem variatns 16

Table3.1 Analogy between Natural and Artificial Ants 26

Table 5. 1: statistics of the executions of 1st value 𝛼=0.1 40

Table 5. 2: statistics on the executions of the 2nd value 𝛼=0.5 41

Table 5. 3: statistics on the executions of the 3rd value 𝛼=0.9 42

Table 5. 4: statistics on the executions of the 1st value 𝛽=0.1 47

Table 5. 5: statistics on the executions of the 1st value 𝛽=0.5 47

xi

Table 5. 6: statistics on the executions of the 1st value 𝛽=0.9 48

Table 5. 7: statistics of the executions1st value 𝜌=0.33 48

Table 5. 8: statistics of the executions 2nd value 𝜌=0.66 49

Table 5. 9: statistics of the executions 3rd value 𝜌=0.99 49

Table 5. 10: statistics of the executions of 1st value of Q =0.33 50

Table 5. 11: statistics of the executions of 2nd value of Q =0.66 51

Table 5. 12: statistics of the executions of 3rd value of Q =0.99 51

Table 5. 13: statistics on the executions of the 4th value of Q =1.5 52

Table 5. 14: statistics on the executions 5th value of Q =1.99 52

Table 5. 15: statistics on the executions of the 1st value =0.1 53

Table 5. 16: statistics on the executions of the 2nd value of =0.5 54

Table 5. 17: statistics on the executions of the 3rd set of =0.9 54

Table 5.18: statistics on the executions of the 2nd value of capacity =150 56

Table 5.19: statistics of the executions of the 3rd value of capacity =250 56

Table 5.20: statistics on the executions the 1st value of MaxIt=100 61

Table 5. 21: statistics on the executions of the 2nd value of MaxIt =200 62

Table 5.22: statistics on the executions of the 3rd value of MaxIt=300 62

List of figures

Figure 1. 1Methods for solving combinatorial optimization problems. 11

xii

 Figure 2. 1: model of an VRP with solution Single Depot VRP -with 3 vehicles. 15

Figure3. 1Step 1 in biological ACO 28

Figure3. 2Step2 in biological ACO 28

Figure3. 3: Step3 in biological ACO 28

Figure3. 4: Step4 in biological ACO 29

Figure3. 5: Step5 in biological ACO 29

Figure3. 6: Step6 in biological ACO 29

 Figure 4. 1: An example of the nearest distance cluster algorithm. 34

Figure 4. 2:The demo of 2-Optoperation 36

Figure 5. 1: MATLAB R2016a. 39

Figure 5.2: Depot 1 paths, the best solution obtained from the execution’s series of 𝛼 42

Figure 5.3: cost paths of depot 1 of the best solution obtained from the execution’s series of 𝛼

 43

Figure 5.4: Depot 2 paths ,the best solution obtained from the execution’s series of 𝛼 43

Figure 5.5: Depot 2 path costs of the best solution obtained from the execution’s series of 𝛼
 44

Figure 5.6: Depot 3 paths of the best solution obtained from the execution’s series of 𝛼 44

figure 5.7: Depot 3 costs paths of the best solution obtained from the execution’s series of 𝛼

45

figure 5.8: Depot 4 paths of the best solution obtained from the execution’s series of 𝛼 45

xiii

figure 5.9: Depot 4 costs paths of the best solution obtained from the execution’s series of 𝛼

, 46

Figure 5.10: figure of the error of the execution of the algorithm with capacity=50 55

Figure 5.11: the best solution obtained from the execution’s series of capacity, capacity>=700,

Depot 1 paths 57

Figure 5.12: the best solution obtained from the execution’s series of capacity >=700, depot

1 paths costs 58

Figure 5.13: the best solution obtained from the execution’s series of capacity>=700, depot 2

paths 58

Figure 5.14: the best solution obtained from the execution’s series of capacity paths costs 59

Figure 5.15: the best solution obtained from the execution’s series of capacity >=700, depot

3 paths 59

Figure 5.16 : the best solution obtained from the execution’s series of capacity 60

Figure 5.17: the best solution obtained from the execution’s series of capacity, capacity>=700

 60

Figure 5.18: the best solution obtained from the execution’s series of capacity>=700, depot 4

paths costs 61

1

Dissertation

Due to the rapid development of technology and in the purpose to improving service and

bringing it closer to customers, many delivery companies use multi-depot, which leads to overall

cost reduction (because now the distance between depots and the customer is small + delivery

speed is better)

Meanwhile, due to the actual constraints of service hours and service distances, and in the

purpose to improve the delivery service, companies usually build multiple depots to serve a large

number of customers.

Hybrid ant colony optimization (HACO) is improved by the nearest distance clustering

approach and local exchange, a nearest distance-based clustering approach is an optimization

technique proposed to allocate all customers to their nearest depot, and the local interchange

operation to minimize the distance to travel in the Vehicle Routing Problem (VRP).

 Finally, a test is applied to evaluate the proposed algorithm; in the meantime, and the total

cost of the solution.

2

General Introduction

Recently, due to the widespread of delivery services in various commercial activities in our

country, as well as transportation services in various economic companies, due to their great

importance in increasing production efficiency and increasing habits, and in particular improving

the quality of services

So many production companies and delivery service companies impose many problems

with delivery and vehicle routing and other likely problems Often this involves finding the

maximum or minimum value of some function: the minimum time to make a certain journey, the

minimum cost for doing a task, and the maximum power that can be generated by a device.

 Many of these problems can be solved by finding the appropriate function and then using

techniques of calculus to find the maximum or the minimum value required In order to develop

the company's return as well as reduce spending on customers, and by mentioning the problems of

improvement(combinatorial optimization problems), we mention the most famous of these

problems: Cutting Stock problem, Packing Problems, Minimum spanning tree, vehicle routing

problem, travelling salesman problem, back wallet problem …..and so on.

In this graduation note we will mention some of these problems, their description and

formulation also some model of these problems, some methods of resolving this kind of problems

and also, we mention ACO ant colony optimization the algorithm used to resolve this kind of

problems and address in particular the ACO for solving CMDVRP (ant colony optimization

algorithm for solving multi depot vehicle routing problem).

3

Chapter 01: Combinatorial optimization

1. 1. Introduction

 Combinatorial optimization occupies a very important place in operations research, in

discrete mathematics and in computer science. Its importance is justified on the one hand by

the great difficulty of the optimization problems and on the other hand by the many practical

applications that can be formulated in the form of an optimization problem. Although

combinatorial optimization problems are often easy to define, they are usually difficult to

solve. Indeed, most of these problems belong to the class of NP-hard problems and therefore

do not currently have an effective algorithmic solution valid for all data. [2]

Given the importance of these problems, many resolution methods have been developed in

operations research (OR) and artificial intelligence (AI). These methods can be broadly

classified into two main categories: exact methods (complete) which guarantee the

completeness of the resolution and approximate methods (incomplete) which lose

completeness to gain in efficiency, so in this chapter, we talk more detail about the techniques

and optimization methods used to solve our problem

1.2. Optimization:

1.2.1. Definition of optimization

 The art of understanding a real problem, of being able to transform it into a mathematical

model that can be studied in order to extract its structural properties and characterize the

solutions to the problem, it is the art of exploiting this characterization in order to determine

the algorithms which calculate them but also to highlight the limits on the efficiency and the

effectiveness of these algorithm [3].

4

 1.2.2. Combinatorial optimization

Combinatorial optimization is a mathematical technique, which consists in minimizing or

maximizing an objective function (Cost, time, distance, etc.). Whose goal is to find and define

an optimal solution most suitable for optimization from a set of possible solutions [3].

1.2.3. Examples of optimization problems:

1.2.3.1. Backpack problem

 The "Backpack problem" is a selection problem that consists in maximizing a quality

criterion under a linear resource capacity constraint. It owes its name to the analogy that can

be made with the problem that arises for the hiker when filling his backpack: he must choose

the objects to carry so as to have the most "useful" bag. possible, while respecting its volume.

 More formally, it can be described as follows. Given a set of n elements and a resource

available in limited quantity, b. For j = 1 to n, we denote pj the profit associated with the

selection of element j and we denote aj the quantity of resource that element j requires, if it is

selected. The coefficients pj and aj take positive values for all j = 1 to n. The knapsack problem

consists in choosing a subset of the n elements, which maximizes the total profit obtained,

respecting the quantity of available resource.

 Each element j is associated with a selection variable, 𝑥𝑗, binary, equal to 1 if j is selected,

equal to 0 otherwise. the total profit obtained can then be written as the sum:

 ∑ 𝑝𝑗

𝑥𝑗
𝑛
𝑗=1 and the total amount of resource used as the sum: ∑ 𝑎𝑗

𝑥𝑗

𝑛
𝑗=1 The backpack

problem is therefore modeled as:

𝑀𝐴𝑋 ∑ 𝑝𝑗

𝑥𝑗
𝑛
𝑗=1 1.(1)

∑ 𝑎𝑗

𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏 1.(2)

 𝑥𝑗∈ {0,1} ∀j = 1..n 1.(3)

5

The resource constraint is called the "backpack constraint"; it is found in optimization

problems, from many fields of application, which involve resources with limited capacity.

In the case where there are several constraints of this type (for example, the hiker can

consider not only a maximum volume, but also a maximum weight, that his bag can support),

we speak of a backpack problem. "multidimensional".

The knapsack problem has been the subject of various works proposing exact methods of

resolution. The proposed algorithms fall under three main types of methods. First, separation

and evaluation 1 type algorithms were proposed in the 1970s, allowing to deal efficiently with

small instances. These performances were subsequently improved by adding additional

constraints to reinforce the bounds in the search tree. Secondly, algorithms based on the

identification of a critical variable and an associated subset of variables, on which a truncated

tree search is applied, have made it possible, from the 1980s, to increase the size of the

instances that can be resolved (up to n=100000). Third, efficient dynamic programming

algorithms, dynamic programming is combined with the identification of a critical variable and

the use of bound strengthening techniques. [5]

1.2.3.2. Assignment problem

The "assignment problem" consists in establishing links between the elements of two

distinct sets, in such a way as to minimize a cost and while respecting link uniqueness

constraints for each element.

We consider m tasks and n agents, with n ≥ m. for any pair (i ,j) (i = 1 to m, j = 1 to n),

the assignment of task i to j entails a performance cost noted 𝑐𝑖.𝑗(𝑐𝑖.𝑗≥ 0). each task must be

performed exactly once and each agent can perform at most one task. the problem consists in

assigning the tasks to the agents, to minimize the total cost of realization and respecting the

constraints of realization of the tasks and availability of the agents.

To any task/agent pair (i , j), we associate an assignment variable, 𝑥𝑖,𝑗, binary, which takes

the value 1 if task i is assigned to agent j and 0 otherwise. The total cost of carrying out the

tasks is then expressed by the sum: ∑ ∑ 𝑐𝑖.𝑗
𝑛
𝑗=1

𝑚
𝑖=1 𝑥𝑖,𝑗 . The number of agents performing task

6

i is given by: ∑ 𝑥𝑖,𝑗
𝑛
𝑗=1 for all i = 1 to m and the number of tasks performed by agent j is given

by: ∑ 𝑥𝑖,𝑗
𝑚
𝑖=1 , for all j = 1 to n. We can therefore model the assignment problem in the form:

𝑀𝑖𝑛 ∑ ∑ 𝑐𝑖.𝑗
𝑛
𝑗=1

𝑚
𝑖=1 𝑥𝑖,𝑗 1.(4)

 ∑ 𝑥𝑖,𝑗 = 1 (∀ i = 1 . . m)𝑛
𝑗=1 1.(5)

 ∑ 𝑥𝑖,𝑗 ≤ 1 (∀j = 1. . n)𝑚
𝑖=1 1.(6)

𝑥𝑖,𝑗 ∈ {0,1} ∀𝑖 = 1. . 𝑚 , ∀𝑗 = 1. . 𝑛 1.(7)

The constraints of this problem are found in many applications involving resource

allocation problems. They are generally called "assignment constraints".

In graph theory, we can reduce ourselves to a coupling problem in a bipartite graph. A

graph G is said to be bipartite if one can divide the vertices into two sets X1 and X2 such that

all edges in the graph join a vertex of X1 to a vertex of X2. A "matching" in a bipartite graph

is a set of edges which have, 2 by 2, no common vertex in G.

By associating X1 to the set of tasks, of cardinality m and X2 to the set of agents, of

cardinality n, an edge (i ,j) in the graph G (with i ∈ X1 and j ∈ X2) represents the possibility

of assigning task i to agent j; the weight is associated 𝑐𝑖.𝑗with each edge (i,j) of G. The weight

of a matching being defined as the sum of the weights of its edges, the assignment problem

then amounts to finding a matching of cardinality m with minimal weight in the graph G.

The particular case where X1 and X2 have the same cardinality (corresponding to the case

n = m for the assignment problem) is frequently studied; we are then interested in the search

for a coupling of maximum cardinality. If we consider sets X1 and X2 of cardinality n and if

there are n 2 edges in the graph G (the bipartite graph is complete), then the matching

maximum is of cardinality n and it is called "perfect matching". We can extend this problem

to that of the search for a maximal matching of minimal weight in G.

 The assignment, or coupling, problem in a bipartite graph can be modeled as a

minimum-cost maximum flow problem in which the capacities of the arcs are all equal to 1.

7

This is a classic problem in graph theory that amounts to seeking to pass a maximum

throughput through a network, for a lower cost 2 . Simple and effective algorithms exist to

solve this problem; in particular the algorithm of Busaker and Gowen which starts from a null

flow and which increases it progressively by searching for " increasing chains " (ie, paths on

the arcs of which one can systematically increase the flow), of minimal cost.

The "Hungarian method", proposed by Kuhn in 1955, is a dual algorithm which is based

on modeling the assignment problem in the form of a linear program, but which can be seen

as a variant of Busaker 's algorithm and Gowen , specialized for the bipartite structure of the

graph. Because of its great efficiency on this type of problem, it is the reference algorithm in

Operations Research to solve the assignment problem. Its principle is based on the fact that the

pairings of minimal weight in the graph of the primal problem are exactly the pairings of

maximum cardinality in the graph of the dual. [5]

1.2.3.3 Traveling salesman problem

 The "traveling salesman problem", or TSP (for Traveling Salesman Problem), is

the following: a sales representative having (n) cities to visit wishes to establish a route which

allows him to pass exactly once by each city and to return to his starting point for a lower cost,

that is- that is, by covering the shortest possible distance. It is one of the oldest and most widely

studied problems in combinatorial optimization. Its applications are numerous. For example,

problems of manufacturing process sequencing or path optimization in robotics can be

expressed directly in the form of a TSP and certain problems, such as transport problems, are

more complex than the TSP but present a structure underlying type TSP.

Let G = (X ,U), a graph in which the set X of vertices represents the cities to be visited, as

well as the starting city of the tour, and U, the set of arcs of G, represents the possible routes

between cities. To any arc (i ,j) ∈ U, we associate the travel distance from 𝑑𝑖.𝑗city i to city j.

The length of a path in G is the sum of the distances associated with the arcs of this path. The

TSP is then reduced to finding a Hamiltonian circuit (ie, a closed path passing exactly once

through each of the vertices of the graph) of minimal length in G. In the case where there exist

certain arcs (i ,j) ∈ U for which 𝑑𝑖.𝑗 ≠ 𝑑𝑗,𝑖, we speak of asymmetric TSP.

8

We can formulate the TSP in an equivalent way by associating to each pair (i,j) of cities to

visit (i = 1 to n, j = 1 to n and i ≠j) a distance 𝛿𝑖.𝑗equal to 𝑑𝑖.𝑗if there is a means of go directly

from i to j (ie, (i,j) ∈ U in G) , fixed at ∞ otherwise and a succession variable, 𝑥𝑖,𝑗, binary,

which takes the value 1 if the city j is visited immediately after the city i in the tour and which

takes the value 0 otherwise. The TSP is then modeled by:

𝑀𝑖𝑛 ∑ ∑ 𝛿𝑖.𝑗
𝑛
𝑗=1

𝑚
𝑖=1 𝑥𝑖,𝑗 1.(8)

 ∑ 𝑥𝑖,𝑗 = 1𝑛
𝑗=1 ∀ i = 1. . n 1.(9)

 ∑ 𝑥𝑖,𝑗 = 1 ∀j = 1. . n𝑚
𝑖=1 1.(10)

 ∑ 𝑥𝑖,𝑗 ≥ 2𝑖𝜖𝑠,𝑗∉𝑠 ∀𝑠 ⊂ 𝑋, 𝑆 ≠ ∅ 1.(11)

 𝑥𝑖,𝑗∈ [0,1] ∀ i = 1..n , ∀j = 1..n

The first two constraints reflect the fact that each city must be visited exactly once; the

third constraint prohibits solutions composed of disjoint subtours, it is generally called

constraint of elimination of subtours.

Integer Linear Programming algorithms have been developed to solve the TSP exactly

 In particular, separation and evaluation search methods are effectively reinforced by the

addition of cuts (branch and cut algorithms) and constraint propagation techniques in the

search tree. Dynamic programming algorithms for finding Hamiltonian circuits in a graph, as

well as Constraint Programming (CPP) also provide good results for problems of up to a

hundred nodes. In addition, efficient heuristic procedures and local optimization techniques

are available (e.g. Lin and Kernighan 's algorithm , as well as lower bound calculations, based

for example on a Lagrangian relaxation of the TSP, making it possible to provide a good

framework of the optimum.

 There are many variants of the TSP, obtained either by adding constraints – such as the

TSP with time windows (TSPTW for Traveling Salesman Problem with Time Windows) in

which each city must be visited within a given time interval – either by modification, such as

9

vehicle routing problems (VRP for Vehicle Routing Problem) in which we no longer consider

a single sales representative to visit the cities but a team (a fleet of vehicles) and which can be

seen as flow problems. [5]

1.2.3.4. Scheduling problem

The "scheduling problem" consists in sequencing and placing in time a set of activities

(elementary work entities), taking into account temporal constraints (deadlines, sequence

constraints, etc.) and constraints relating to the use and availability of the resources required

by the activities .Posed in this way, it is a problem of satisfaction of constraints which finds its

applications in various fields (project management, production workshops, etc.) and which is

the subject of research work from a point of view. view of decision support, in particular

through constraint-based approaches .In an optimization context, we also seek to minimize (or

maximize) a criterion, such as for example the total duration of the activities (minimization of

Makespan).

The term "scheduling problem", unlike the three problems seen previously, does not refer

to a totally defined problem for which there is a direct mathematical formulation, but rather to

a family of problems. Indeed , a scheduling problem is defined by the data of the activities and

the resources which constitute it and these elements can be of very varied natures.

For example, a resource is "disjunctive" (or non-sharable) if it cannot perform more than

one activity at a time (this is called a disjunctive scheduling problem), otherwise, the resource

is said to be "cumulative" (and leads to a cumulative scheduling problem). A resource is

"renewable" if, after having been used by one or more activities, it is again available in the

same quantity (machine, processor ...); the amount of resource usable at any time is limited. If

the performance of an activity reduces it by a certain quantity, the resource is on the contrary

"consumable" (raw materials, budget, etc.) and in this case, the overall consumption over time

is limited. A resource is "doubly constrained" if both its instantaneous use and its overall

consumption are limited (project funding is the most typical example).

10

Regarding the activities, we can consider that it is possible to interrupt them and then

resume them later, or on the contrary that they must be carried out without interruption. One

then speaks respectively of a "preemptive" and "non-preemptive" problem. different

constraints may apply to activities; for example, execution "window" constraints, with "earliest

start" and " latest end" dates, "precedence constraints" which impose that certain activities be

fi nished before others can begin, or time constraints between two activities (limited waiting

time or, on the contrary, preparation time required between two tasks).

Several types of decision variables can be used to model a scheduling problem. For

example, in the case of a one-machine, disjunctive and non-preemptive scheduling problem,

presents a review of the different mathematical formulations proposed in the literature. There

are four types of decision variables: real variables indicating the start or end of the execution

of an activity on the machine (ti is the start date of execution of activity i), binary variables

indicating an immediate succession relationship between two tasks (𝑓𝑖,𝑗 = 1if activity j is

executed just after i on the machine,𝑓𝑖,𝑗 = 0 otherwise), binary variables indicating the position

of an activity in the sequence (𝑠𝑖,𝑗 = 1if activity i is the 𝑗è𝑚𝑒activity executed by the machine,

𝑠𝑖,𝑗 = 0otherwise), binary variables, indexed on the discretized time and indicating the start of

an activity at a certain time step (𝑥𝑖,𝑡 = 1if activity i starts at the time step 𝑥𝑖,𝑡 = 0if otherwise).

The various constraints are expressed more or less easily in the various formalisms. For

example, a formulation based solely on the start dates of activities makes it possible to

formulate precedence constraints of the type "activity i is carried out before activity j" (𝑡𝑗 −

𝑡𝑖 > 𝑝𝑖, where 𝑝𝑖is the duration of execution of activity i), but does not make it possible to

express certain relationships, such as the preparation times between two activities. In this case,

it is necessary to introduce a variable indicating the succession of activities between them

(variable of the "successor" or "position in the sequence" type).

We thus obtain linear models for a large number of scheduling problems. The linear

relaxation of these models provides bounds which can be used directly inside a tree search

algorithm by separation and evaluation, or which can be refined by different procedures

(Lagrangian relaxation, addition of cuts). In general, purely linear techniques do not give good

11

results on scheduling problems. The most efficient algorithms , whether for an exact resolution

of the optimization problem or for the search for admissible solutions of good quality, are most

often based on the use of advanced techniques of constraint propagation.[5]

figure 1. 1Methods for solving combinatorial optimization problems.[2]

1.3. Combinatorial optimization problems resolution methods

 1.3.1. Exact methods

Exact resolution methods are numerous and are characterized by the fact that they make

it possible to obtain one or more solutions whose optimality is guaranteed.

Among these methods, we can notice the simplex algorithm which makes it possible to

12

obtain the optimal solution of a problem by going through the convex closure of the search

set (set of admissible solutions) and this by passing from vertex to vertex. Despite having

a non-polynomial worst-case mathematical complexity, it solves most problems quickly.

However, it can only be applied to problems having the property of convexity, i.e. to

problems in continuous variables or to problems in integer variables having a unimodular

constraint matrix T (because in this case, all the vertices of the search set are integers) such

as transport or assignment problems.

For other problems (ILP, MILP, 0-1ILP), there are several methods:

1.3.1.1. Dynamic programming

● Dynamic programming consisting in placing the problem in a family of

problems of the same nature but of different difficulty then in finding a

recurrence relation linking the optimal solutions of these problems.

1.3.1.2. Branch & Bound

● Branch & Bound consisting of making an implicit enumeration by separating

the problem into sub-problems and evaluating these using relaxation (mainly

continuous or Lagrangian) until you only have problems that are easy to solve

or which we know with certainty that they cannot contain an optimal solution.

1.3.1.3. Polyhedral methods

● Polyhedral methods consisting of gradually adding additional constraints in

order to reduce the domain of admissible solutions to a convex domain (without

removing the optimal solution(s) of course).

These methods are general and often require particularization vis-à-vis a specific

problem. There are also generic applications (AMPL, CPLEX, LINDO, MPL, OMP,

XPRESS...) allowing solving all the problems that can be written in the algebraic form of

a problem in binary, integer

Or mixed variables.

13

 It should also be noted that the method consisting in carrying out an explicit

enumeration of all the solutions (i.e. testing them one by one, a method that can be

envisaged for all the problems with variables with bounded values) very quickly shows

its limits as soon as that the number of variables increases since its complexity is in kn

where k represents the number of values that a variable can take and n the number of

variables of the problem [4].

1.3.2. Approximate methods

 In certain situations, it is necessary to have a good quality solution (that is to say quite

close to the optimum) in a context of limited resources (computing time and/or memory). In

this case the optimality of the solution will not be guaranteed, nor even the difference with the

optimal value. However, the time necessary to obtain this solution will be much lower and

could even be fixed (obviously in this case the quality of the solution obtained will strongly

depend on the time left to the algorithm to obtain it).

 Typically, this type of method, called heuristic is particularly useful for problems

requiring a real-time (or very short) solution or for solving difficult problems on large

numerical instances. They can also be used to initialize an exact method (Branch & Bound for

example).

 Among these methods, it is necessary to distinguish the heuristics targeted on a particular

problem and the more powerful and adaptable metaheuristics to solve a large number of

problems. However, a metaheuristic, to be sufficiently efficient on a given problem, will

require a more or less fine adaptation. These approximate methods can be classified into

different categories:

● Constructive (greedy algorithms, Pilot method, GRASP)

Local search (descent algorithms, multi-starts, simulated annealing, threshold algorithm, Tabu

search, sound effect method)

● Evolutionists (Genetic Algorithms, Evolution Algorithms, Scattered Search, Path

Method, Ant Systems)

14

● Neural networks (Hopfield - Tank model, Boltzmann machine, self-adaptive network,

elastic network)

● Bayesian heuristics (global optimization, discrete optimization)

● Overlay (disturbance of data, disturbance of the parameters of a heuristic) [4].

15

Chapter 02: Vehicle Routing problems and their

variants

2.1. Introduction

 Vehicle routing problem is a common problem in operational research, it is a combinatorial

optimization problem where we have area service consisting of a set of depots and a randomly

distributed set of customers, also we have a fleet of identical vehicles of homogeneous or

heterogenous capacity that the vehicle can carries [6].

 The vehicle routing problem is extended with constraints as examples: if we consider the

quantities of goods requirements then should we add the capacity constraints, if we consider the

time assortment should we add the time window variant constraints,..... and so on [9].

Figure 2. 1: model of an VRP with solution Single Depot VRP -with 3 vehicles [9].

2.2. Some vehicle routing problem variants

16

Table 2. 1: Vehicle routing problem variants

Some vehicle routing problem variants

 description

Vehicle Routing Problem with Pickup

and Delivery (VRPPD)

is a VRP in which the possibility that customers

return some commodities is contemplated. So in

VRPPD it’s needed to take into account that the

goods that customers return to the deliver vehicle

must fit into it.

Vehicle Routing Problem with Time

Windows (VRPTW)

 can be defined as choosing routes for limited

number of vehicles to serve a group of customers

in the time windows(time interval). Each vehicle

has a limited capacity. It starts from the depot and

terminates at the depot. Each customer should be

served exactly once.

VRP with Backhauls

in this variation, there are two subsets of

customers: the first subset requires deliveries

from the depot and the second subset requires

goods to be picked up to be delivered to the

depot.The total deliveries and the total pick-ups

on each route must separately be less than the

capacity of each vehicle

 Dynamic VRP

is when the service requests are not completely

known before the start of service, but they arrive

during the distribution process(arrive

dynamically) the routes have to be replanned at

run time in order to include them

Capacitated Vehicle Routing Problem

(CVRP)

is a VRP in which vehicles with limited carrying

capacity need to pick up or deliver commodity at

various locations. The commodity have a

quantity, such as weight or volume, and the

vehicles have a maximum capacity that they can

carry. The problem is to pick up or deliver the

commodity for the least cost, while never

exceeding the capacity of the vehicles.

17

2.3 . multi-depot vehicle routing problem MDVRP

2.3.1 Description of MDVRP:

 Multi-depot vehicle routing problem (MDVRP) is one of the classical vehicle

routing problems (VRP), where we multi-depot and multi-initial known customers each

depot with their nearest customers (area of service), the MDVRP can be described as

following: each depot with their customers represent a single depot vehicle routing

problem, the optimization problems in MDVRP is allocated each customer to their nearest

depot

The objective of the problem is to service all the customers of each depot and minimize

travel distance.

We mention that there is a fleet of vehicles, and there are two cases to consider if the fleet

of the homogenous vehicle or the heterogeneous fleet of the vehicle in terms of capacity to

carry it.

also, we have two ways to solve the MDVRP: with a given number of vehicles or using

enough vehicles.

In MDVRP vehicles are required to start from the depots visit all corresponding

customers and return to the depots.

 The case that we consider the capacity the problem becomes CMDVRP and we

add the constraint formulation of capacity to the model [7].

2.3.2 Formulation of MDVRP:

 The MDVRP can be formalized as follows. An undirected graph G = (V, E) is

established to describe the mathematical model. In this model, 𝑉 = {𝑉𝐶 , 𝑉𝐷} represents the

vertex set and 𝐸 = {(𝑣𝐼 , 𝑣𝐽)|𝑣𝐼 , 𝑣𝐽 ∈ 𝑉, 𝑖 < 𝑗} is the edge set.

 𝑉𝑐 = 𝑉1, 𝑉2, 𝑉3, 𝑉4 … . , 𝑉𝑛 is the set of customers and 𝑉𝐷 = {𝑉𝑛+1, 𝑉𝑛+2, … . . , 𝑉𝑛+𝑚 is

the set of depots, in E, we get distance matrix 𝐶 = 𝐶𝑖,𝑗 by calculating the Euclidean

18

distance of customers 𝑉𝑖 and 𝑉𝑗every customer 𝑉𝑖 has a demand 𝑞𝑖 and needs to be visited

once by only one vehicle.[8]

there is also a fleet of 𝐾 identical vehicles, each with capacity 𝑄. In the mathematical

formulation that follows, binary variable 𝑋𝑖𝑗𝑘 is equal to 1 when vehicle 𝑘 visits node

𝑗 immediately after node 𝑖.[8]

Minimizing the total cost by the formula:

∑ ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗𝑘𝐾
𝑘=1

𝑛+𝑚
𝑗=1

𝑛+𝑚
𝑖=1 2.(1)

For each vehicle k from k=1 to K starting from node i (i=1..n+m) ending in node j (=1..n+m)

,i≠j

 Subject to :

∑ ∑ 𝑋𝑖𝑗𝑘 = 1 (𝑗 = 1,2, . . , 𝑛);𝐾
𝑘=1

𝑛+𝑚
𝑖=1 2.(2)

(2) The first constraint which means each vehicle should visit each node one and only one

time in each edge (path,cercle) in the complete solution of the problem

∑ ∑ 𝑋𝑖𝑗𝑘 = 1 (𝑖 = 1,2, … . , 𝑛);𝐾
𝑘=1

𝑛+𝑚
𝑗=1 2.(3)

 (3) Guarantee that each customer is served by exactly one vehicle

Note that the value of 𝑘 replaced in the formula is equal 1 all the time let’s say it’s boolean

variable, for each vehicle 𝑘 ,𝑋𝑖𝑗 which is also a boolean variable which can be 1 or 0, so

the result of all the formula it should be 1(if the customer is server by the vehicle 𝑘𝑖 or 0

(if not visited by the vehicle 𝑘𝑖 [8] .

∑ ∑ 𝑞𝑖 ∗ 𝑋𝑖𝑗𝑘 ≤ 𝑄 (𝑘 = 1,2, … . , 𝑛);𝑛+𝑚
𝑗=1

𝑛+𝑚
𝑖=1 2.(4)

19

 Formula (4) it represents the constraint of vehicle capacity

it ensures that the summation of capacity requirement of subtours of the solution of the

model don’t exceed the vehicle capacity

As example: if we found in a VRP model a path that exceed the vehicle capacity

then the other nodes in the path we will handle it by another new vehicle that make a new

path which make a new path who collect the remaining nodes from previous path, or we

will change the solution definitively

∑ ∑ 𝑋𝑖𝑗𝑘 ≤ 1 (𝑘 = 1,2, … . . , 𝐾)𝑛
𝑗=1

𝑛+𝑚
𝑖=𝑛+1 2. (5)

(5) It guarantees that at more one vehicle it was come from node 𝑖 to node j 𝑖 ∈

[0, 𝑛 + 𝑚] , 𝑛 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑚 ∶ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑠𝑒𝑡 𝑜𝑓 𝑑𝑒𝑝𝑜𝑡𝑠

∑ ∑ 𝑋𝑖𝑗 ≤ 1 (𝑘 = 1,2, … … , 𝐾)𝑛
𝑖=1

𝑛+𝑚
𝑗=𝑛+1 2.(6)

(6) It guarantees that at more 1 vehicle it was leaved(visited) the node j

2.4 . Conclusion

In this chapter, we have seen the various variants of vehicle routing problem, CVRP,

VRPD, and MDVRP, Therefore, we conclude that the VRP can impose various variants and

restrictions as we see we can represent by new formulation we add it in the model, this

formulation should be checked in each search or let say generation of feasible solution (tour)

in VRP, also we conclude that the objective of this problem or the main consideration

problem in VRPs it to optimize the distance or the capacity of requirements in the routes by

setting what should be Cost 𝐶𝑖𝑗

And we have seen CMDVRP- multi depot vehicle routing problem considering capacity

Description and mathematical formulation.

In the next chapter we see the algorithm Ant Colony Optimization solving vehicle routing

problems and we detail in the Hybrid Ant Colony Optimization algorithm for MDVRP which

is the main subject in this graduation project .

20

21

Chapter 03: Ant Colony Optimization Algorithm

 3.1. Introduction

 Ant colony optimization (ACO) is one of the most recent techniques for approximate

optimization. The inspiring source of ACO algorithms are real ant colonies. More specifically,

ACO is inspired by the ants’ foraging behavior. At the core of this behavior is the indirect

communication between the ants by means of chemical pheromone trails, which enables them to

find short paths between their nest and food sources. This characteristic of real ant colonies is

exploited in ACO algorithms in order to solve, for example, discrete optimization problems.

 Depending on the point of view, ACO algorithms may belong to different classes of

approximate algorithms. Seen from the artificial intelligence (AI) perspective, ACO algorithms

are one of the most successful strands of swarm intelligence. The goal of swarm intelligence is the

design of intelligent multi-agent systems by taking inspiration from the collective behavior of

social insects such as ants, termites, bees, wasps, and other animal societies such as flocks of birds

or fish schools. Examples of “swarm intelligent” algorithms other than ACO are those for

clustering and data mining inspired by ants’ cemetery building behavior, those for dynamic task

allocation inspired by the behavior of wasp colonies, and particle swarm optimization.

Seen from the operations research (OR) perspective, ACO algorithms belong to the class of

metaheuristics. The term metaheuristic, first introduced in, derives from the composition of two

Greek words. Heuristic derives from the verb heuriskein (ǫυρισκǫιν) which means “to find”, while

the suffix meta means “beyond, in an upper level”. Before this term was widely adopted,

metaheuristics were often called modern heuristics. In addition to ACO, other algorithms such as

evolutionary computation, iterated local search, simulated annealing, and tabu search, are often

regarded as metaheuristics. For books and surveys on metaheuristics see [11]

22

 3.2 The origins of ant colony optimization

 Marco Dorigo and colleagues introduced the first ACO algorithms in the early 1990’s . The

development of these algorithms was inspired by the observation of ant colonies. Ants are social

insects. They live in colonies and their behavior is governed by the goal of colony survival rather

than being focused on the survival of individuals. The behavior that provided the inspiration for

ACO is the ants’ foraging behavior, and in particular, how ants can find shortest paths between

food sources and their nest. when searching for food, ants initially explore the area surrounding

their nest in a random manner. While moving, ants leave a chemical pheromone trail on the ground.

Ants can smell pheromone. When choosing their way, they tend to choose, in probability, paths

marked by strong pheromone concentrations. As soon as an ant finds a food source, it evaluates

the quantity and the quality of the food and carries some of it back to the nest. During the return

trip, the quantity of pheromone that an ant leaves on the ground may depend on the quantity and

quality of the food. The pheromone trails will guide other ants to the food source. It has been

shown in that the indirect communication between the ants via pheromone trails—known as

stigmergy —enables them to find shortest paths between their nest and food sources.

As a first step towards an algorithm for discrete optimization we present in the following a

discretized and simplified model of the phenomenon, after presenting the model we will outline

the differences between the model and the behavior of real ants. Our model consists of a graph G

= (V,E), where V consists of two nodes, namely vs (representing the nest of the ants), and vd

(representing the food source). Furthermore, E consists of two links, namely e1 and e2, between

vs and vd . To e1 we assign a length of l1, and to e2 a length of l2 such that l2 > l1. In other words,

e1 represents the short path between vs and vd , and e2 represents the long path. Real ants deposit

pheromone on the paths on which they move. Thus, the chemical pheromone trails are modeled as

follows. We introduce an artificial pheromone value τi for each of the two links ei , i = 1, 2. Such

a value indicates the strength of the pheromone trail on the corresponding path. Finally, we

introduce na artificial ants. Each ant behaves as follows: Starting from vs (i.e., the nest), an ant

chooses with probability.

𝑝𝑖 = 𝜏𝑖/ 𝜏1 + 𝜏2 (𝑖 = 1, 2 … … 𝑛) 2.(1)

23

 between path e1 and path e2 for reaching the food source vd . Obviously, if τ1 > τ2, the

probability of choosing e1 is higher, and vice versa. For returning from vd to vs , an ant uses the

same path as it chose to reach vd , and it changes the artificial pheromone value associated to the

used edge. More in detail, having chosen edge ei an ant changes the artificial pheromone value τi

as follows:

 𝜏𝑖 ← 𝜏𝑖 + 𝑄 /𝑙𝑖 2.(2)

 , where the positive constant Q is a parameter of the model. In other words, the amount of

artificial pheromone that is added depends on the length of the chosen path: the shorter the path,

the higher the amount of added pheromone. The foraging of an ant colony is in this model

iteratively simulated as follows: At each step (or iteration) all the ants are initially placed in node

vs . Then, each ant moves from vs to vd as outlined above. As mentioned in the caption of Fig.

1(d), in nature the deposited pheromone is subject to an evaporation over time. We simulate this

pheromone evaporation in the artificial model as follows:

 𝜏𝑖 ← (1 − 𝜌) · 𝜏𝑖, 𝑖 = 1, 2. 2.(3)

(3) The parameter ρ ∈ (0, 1] is a parameter that regulates the pheromone evaporation. Finally,

all ants conduct their return trip and reinforce their chosen path as outlined above. We implemented

this system and conducted simulations with the following settings: l1 = 1, l2 = 2, Q = 1. The two

pheromone values were initialized to 0.5 each. Note that in our artificial system we cannot start

with artificial pheromone values of 0. This would lead to a division by 0 in Eq. (1). The results of

our simulations are shown in Fig. 2. They clearly show that over time the artificial colony of ants

converges to the short path, i.e., after some time all ants use the short path. In the case of 10 ants

the random fluctuations are bigger than in the case of 100 ants ,this indicates that the shortest path

finding capability of ant colonies results from a cooperation between the ants.[11]

3.3.1 A real ant

An ant is an insect that lives and works in a large colony of ants. Most ants don't

have wings, and some of them have stingers.

24

Ants are related to both bees and wasps, and like them are social insects. Ant

colonies can include anywhere from a few dozen to millions of ants, divided into jobs or

castes. There isn't a continent in the world that

doesn't have ants living there. The Middle English word for ant was ampte, from the

Old English æmette and a Germanic root. [14]

3.3.2Artificial ant:

An artificial ant simulates a real ant and a set of artificial ants develops mechanisms of

cooperation and learning. Ant Colony Optimization (ACO) was developed by Dorigo et. al. in

1996 [1] and it was first used to solve combinatorial agents that imitate the behavior of real

ants [11].

However, it should be noted that an artificial ant system has some differences in

comparison with real ants which are as follows:

 a) Artificial ants have memory.

 b) They are not completely blind.

c) They follow a discrete time system.

The main idea is that when an ant has to select a path among several available paths,

the ant chooses the one which is chosen more frequently by other ants in the past. Thus path

with larger amount of pheromones is the shorter path and chosen by most of the ants. The Ant

System works in two major steps:

a) Construction of the solution to the problem under consideration.

b) Updating the pheromone trails which may increase or decrease the amount of pheromone

on certain paths.

25

3.3From Real to Artificial ant:

Ant colonies, and more generally social insect societies, are distributed systems that, in

spite of the simplicity of their individuals, present a highly structured social organization. As a

result of this organization, ant colonies can accomplish complex tasks that in some cases far exceed

the individual capabilities of a single ant. The field of ‘‘ant algorithms’’ study models derived from

the observation of real ants’ behavior, and uses these models as a source of inspiration for the

design of novel algorithms for the solution of optimization and distributed control problems. The

main idea is that the self-organizing principles which allow the highly coordinated behavior of real

ants can be exploited to coordinate populations of artificial agents that collaborate to solve

computational problems. Several different aspects of the behavior of ant colonies have inspired

different kinds of ant algorithms. Examples are foraging, division of labor, brood sorting, and

cooperative transport. In all these examples, ants coordinate their activities via incentives, a form

of indirect communication mediated by modifications of the environment. For example, a foraging

ant deposits a chemical on the ground which increases the probability that other ants will follow

the same path. Biologists have shown that many colony-level behaviors observed in social insects

can be explained via rather simple models in which only stigmergy communication is present. In

other words, biologists have shown that it is often sufficient to consider stigmergic, indirect

communication to explain how social insects can achieve self-organization. The idea behind ant

algorithms is then to use a form of artificial stigmergy to coordinate societies of artificial agents.

One of the most successful examples of ant algorithms is known as ‘‘ant colony optimization,’’ or

ACO, and is the subject of this book. ACO is inspired by the foraging behavior of ant colonies,

and targets discrete optimization problems. This introductory chapter describes how real ants have

inspired the definition of artificial ants that can solve discrete optimization problems.[12]

3.4 Differences between real ants and artificial ants:

The main differences between the behavior of the real ants and the behavior of the artificial

ants in our model are as follow:

26

 (1) While real ants move in their environment in an asynchronous way, the artificial ants

are synchronized, i.e., at each iteration of the simulated system, each of the artificial ants moves

from the nest to the food source and follows the same path back.

 (2) While real ants leave pheromone on the ground whenever they move, artificial ants

only deposit artificial pheromone on their way back to the nest.

(3) The foraging behavior of real ants is based on an implicit evaluation of a solution (i.e.,

a path from the nest to the food source). By implicit solution evaluation we mean the fact that

shorter paths will be completed earlier than longer ones, and therefore they will receive pheromone

reinforcement more quickly. In contrast, the artificial ants evaluate a solution with respect to some

quality measure which is used to determine the strength of the pheromone reinforcement that the

ants perform during their return trip to the nest.[11][13]

Natural Ant colony Artificial Ant colony

Ant

Ant colony

Pheromone

Path

Evaporation

Agent

Sites of Ants/Iterations

Diversity mechanism

Solution

Pheromone update

Table3.1 Analogy between Natural and Artificial Ants [15]

3.5 ACO (ant colony optimization)

 3.5.1 Description:

Ant colony optimization is a search technique used in computing to find near optimal

solutions to discrete optimization problems.

27

ACO is swarm intelligence inspired from the way that ants indirectly communicate

directions to each other.[16]

The most interesting aspect of the collaborative behavior of ant species is their ability to find

the shortest paths between the ant’s nest and food sources.

Finding the shortest path between their nest and a food source by chase pheromone

trails exposed by other ants, more instance trails the higher probability that an ant will follow

it and thus enrich the trail with its own pheromone.

One of the properties of pheromone is that it evaporates over time, and the ant sense

the pheromone trail for travelling over the nest or searching the food.

the pheromone trail of the longest paths evaporates and that it because it takes more

time from the shortest path, so logically the shortest path will اhave a higher density of

pheromone trail, also because the pheromone update for each ant took the path (deposited &

evaporated pheromone). [17]

3.5.2 Biological ACO ant colony optimization:

Let’s see an example of this. let consider there are two paths to reach the food from the

colony. At first, there is no pheromone on the ground. So, the probability of choosing these

two paths is equal that means 50%.50% Let consider two ants choose two different paths to

reach the food as the probability of choosing these paths is fifty-fifty.

figure3. 1Step 1 in biological ACO [8]

The distances of these two paths are different. ant following the shorter path will reach

the food earlier than the other.

https://www.sciencedirect.com/topics/engineering/ant-colony-optimization
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/qtc2.12023

28

figure3. 2 Step2 in biological ACO [8]

After finding food, it carries some food with itself and returns to the colony. when it

tracking the returning path it deposits pheromone on the ground. The ant following the

shorter path will reach the colony earlier.

figure3. 3: Step3 in biological ACO [8]

When the third ant wants to go out for searching food it will follow the path having

shorter distance based on the pheromone level on the ground. As a shorter path has more

pheromones than the longer, the third ant will follow the path having more pheromones.

figure3. 4: Step4 in biological ACO [8]

By the time the ant following the longer path returned to the colony, Then when

another ant tries to reach the destination(food) from the colony if it find that each path has

the same pheromone level it can not differentiate between the densities of paths, it

randomly chooses one of them. Let consider it choose the above one(in the picture

located below)

29

figure3. 5: Step5 in biological ACO [8]

Repeating this process again and again, after some time, the shorter path has a more

pheromone level than others and has a higher probability to follow the path, and all ants

next time will follow the shorter path.

figure3. 6: Step6 in biological ACO [8]

For solving different problems with ACO, there are three different proposed version of

Ant-System AS:

Ant Density & Ant Quantity: Pheromone is updated in each movement of an ant from

one location to another.

Ant Cycle: Pheromone is updated after all ants completed their tour.

Pheromone Update . [8]

https://towardsdatascience.com/the-inspiration-of-an-ant-colony-optimization-f377568ea03f,%20consultation

30

3.5.3 metaheuristic ACO algorithm and formulation:

An artificial ant is made for finding the optimal solution. In the first step of solving a

problem, each ant generates a solution. In the second step, paths found by different ants are

compared. And in the third step, the paths value or pheromone is updated.

3.5.3.1Basic ACO formulation

 Each ant needs to construct a solution to move through the graph. To select the

next edge in its tour, an ant will consider the length of each edge available from its current

position, as well as the corresponding pheromone level. At each step of the algorithm, each

ant moves from a state 𝑥 to state, corresponding to a more complete intermediate solution.

Thus, each ant computes a set 𝐴𝑘(𝑥) 𝐴of feasible expansions to its current state in each

iteration, and moves to one of these in probability. For ant 𝑲𝒕𝒉, the probability 𝑷𝒙𝒚
𝒌 of

moving from state 𝒙 to state 𝒚 depends on the combination of two values,

the attractiveness 𝜼𝒙𝒚of the move, as computed by some heuristic indicating the a

priori desirability of that move and the trail level 𝝉𝒙𝒚 of the move, indicating how proficient

it has been in the past to make that particular move, the trail level represents a posteriori

indication of the desirability of that move [19]

In general, the 𝑘th ant moves from state 𝑥 to state 𝑦 with probability:

Pseudo Code: ACO metaheuristic algorithm

in pseudo code [19]

procedure ACO_MetaHeuristic

while not_termination do

generateSolutions()

daemonActions()

pheromoneUpdate()

repeat()

end procedure

https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms

31

𝑃𝑥𝑦
𝑘 =

(𝜏𝑥𝑦)𝛼(𝜂𝑥𝑦)
𝛽

∑ (𝜏𝑥𝑧)𝛼
𝑧∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑥 (𝜂𝑥𝑧)𝛽

 2.(4)

where 𝜏𝑥𝑦 is the amount of pheromone deposited for transition from state 𝑥 to

𝑦 , 0 ≤ 𝛼 is a parameter to control the influence of 𝜏𝑥𝑦, 𝜂𝑥𝑦 is the desirability of

state transition 𝑥𝑦 (a priori knowledge, typically
1

𝑑𝑥𝑦
, where 𝑑 is the distance

(between state x and y), and 𝛽 ≥ 1 is a parameter to control the influence of 𝜂𝑥𝑦.

𝜏𝑥𝑧 and 𝜂𝑥𝑧represent the trail level and attractiveness for other possible state

transitions.

 3.5.3.1.1) Pheromone update:

Trails are usually updated when all ants have completed their solution,

increasing or decreasing the level of trails corresponding to moves that were part of

"good" or "bad" solutions, respectively.

 An example of a global pheromone updating rule is:

𝜏𝑥𝑦𝑛𝑒𝑤
⟵ (1 − 𝜌)𝜏𝑥𝑦𝑜𝑙𝑑

+ ∑ 𝛥𝜏𝑥𝑦
𝑘𝑚

𝑘 2.(5)

Where 𝜏𝑥𝑦 is amount of pheromone deposited for a state transition 𝑥𝑦, 𝜌 is

the pheromone evaporation coefficient, 𝑚 is the number of ants and 𝛥𝜏𝑥𝑦
𝑘 is the

amount of pheromone deposited by 𝑘th ant, typically given for TSP problem (with

moves corresponding to arcs of the graph) by:

𝛥𝜏𝑥𝑦
𝑘 = {

𝑄

𝐿𝑘
 𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑢𝑠𝑒𝑠 𝑐𝑢𝑟𝑣𝑒 𝑥𝑦 𝑖𝑛 𝑖𝑡𝑠 𝑡𝑜𝑢𝑟

0 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒
 2.(6)

32

Where 𝑳𝒌 the cost of 𝑘th ant’s tour (typically length) and 𝑸 is a constant

3.5.4 Some problems resolved with ant colony optimization ACO

The ACO meta-heuristic has been applied to various different combinatorial

optimization problems with a large number of successful implementations.

Applications to static combinatorial optimization issues include the following:

● travelling salesman Problem, where a salesman must find the shortest route by

which he can visit a given number of cities, each city exactìy once.

● Quadratic Assignment Problem, the problem of assigning n facilities to n

locations so that the costs of the assignment are minimized.

● Job-Shop Scheduling Problem, In order to avoid having two jobs processed

simultaneously on the same machine and to reduce the total time required to

complete all operations, a given set of machines and a given set of job operations

must be assigned to time intervals.

● Vehicle Routing Problem, the objective is to find minimum cost vehicle Routes

such thât:

❖ Every customer is visited exactly once by exactly one vehicle;

❖ For every vehicle the total demand does not exceed the vehicle capacity;

❖ The total tour length of each ræhicle does not exceed a given limit;

❖ Every vehicle starts and ends its tour at the same position.[27]

3.6 Conclusion:

Ant algorithms are inspired by the self-regulating search behavior of natural ants, which

show amazing resilience, adaptability and scalability despite being based on a set of simple

mechanisms.

The ant colony optimization algorithm is a metaheuristic algorithm used in many

different types of harmonic optimization problems, difficult NP problems,, such as

subsets, vehicle routing, scheduling...

The ACO algorithm adapts to different problems based on datasets and some

modifications in the ant system, as well as adding and modifying the limitations and limitations

33

of the algorithms, but the main idea of the algorithm remains the same for multiple extensions

of the ACO algorithm.

34

Chapter 04: Hybrid Ant Colony Optimization for Multi

depot Vehicle Routing

4.1 A Hybrid Ant Colony Algorithm for MDVRP [1]

4.1.1 Hybrid Ant Colony Optimization

In this study we applied the nearest distance clustering approach to multi depot vehicle routing

problem to allocate each customer to their nearest depot, after the clustering process we give the

results of clustering to the ACO algorithm solving multi depot vehicle routing problem after ACO

find the solution for each submodel (VRP)we move to the optimization process and we apply the

local interchange technique (2-opt algorithm) to obtain better approximative solutions from the ant

colony algorithm for MDVRP.

4.1.2. The Nearest Distance Cluster Algorithm.

The nearest distance clustering approach is a technique used to divide the whole area of

delivery service which contain multi-depot and multi-knowed customer into multi-area service

each depot with their nearest customers.[23]

figure 4. 1: An example of the nearest distance cluster algorithm. [23]

35

4.1.3 Generate Initial Solutions. In ACO

After generating all the feasible solutions to the problem, we give it to the ACO algorithm

to search for the best solution tours and costs, each ant visits all the vertexes (customers) of all

the feasible solutions once at more. The complete routes that ants have passed are initial

solutions. The ants will decide to select the next customer in the feasible solutions by formula

4. (1).

 𝑝𝑖,𝑗(𝑘) = {
 𝜏(𝑖,𝑗)𝛼×𝜂(𝑖,𝑗)𝛽

∑𝐼∉𝑡𝑎𝑏𝑢 𝜏(𝑖,𝑗)𝛼×𝜂(𝑖,𝑗)𝛽
 𝑗 ∉ 𝑡𝑎𝑏𝑢 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 4. (1)

The formula 4.1 represents the probability that the ant (k) select the node j as the next

customer to visit it, the probability is equal to 𝜏(𝑖, 𝑗)𝛼 which is the density of pheromone in

the edge(i,j) to the power of constant (𝛼) which is the relative influence of density of

pheromone multiple 𝜂(𝑖, 𝑗)𝛽 which is the visibility of edge(I,j) to the power of 𝛽: the relative

influence of visibility of the edge [23].

4.2 Optimization process [1]

4.2.1. Local Interchange Operation 2-opt

 It’s local optimization heuristic technique and most common of its algorithm it’s 2-opt

algorithm, it consists in breaking all possible pair of adjacent edges in tour and reconnecting

them differently in the purpose of obtain minimal distance of the tour, if the cost of the new

tour is minimal than the recent then it update it to new form, otherwise it hold the same tour

[23].

36

figure 4. 2: The demo of 2-Opt-operation [23]

4.3. Update of Pheromone Information.

 pheromone updating is the most important thing that assumes the quality of the solutions

 of ACO algorithm, there are two kinds of systems of pheromone updating

Ant Cycle: Pheromone is updated after all ants completed their tour.then

Ant Density & Ant Quantity: Pheromone is updated in each movement of an ant from one

location to another

𝜏𝑖,𝑗
𝑛𝑒𝑤 = 𝜌 × 𝜏𝑖,𝑗

𝑜𝑙𝑑 + ∑ ∆𝜏𝑖,𝑗
𝑘𝐾

𝑘 𝜌 ∈ (0.1) 4.(4)

 In formula (4), 𝜏𝑖,𝑗new : is the value of new(updated) density of pheromone

𝜌 × 𝜏𝑖,𝑗
𝑜𝑙𝑑 it represent the evaporation process,+∑ ∆𝜏𝑖,𝑗

𝑘𝐾
𝑘 : represent the

recompense process, so the pheromone updating consists on this two primary

process[1] .

4.6. Conclusions

In this chapter we presented some of the big points of our work in the theoretical part,

which also represents what we have achieved in the practical aspect of the graduation project

37

first of all we have seen the nearest distance clustering approach which consists of the

allocation and division of the area service into submodel of VRP problems, also we have seen

and how the ACO algorithm generate the initial solution.

secondly, we see the optimization process and we have explained the 2-opt algorithm,

thirdly and finally, the update pheromone which is the most important process in the ACO

algorithm for the quality of the solution

38

Chapter 05: Implementation and results

5.1. Introduction

This chapter is dedicated to the contribution of our final graduation project, which consists of

Hybrid Ant Colony Optimization for multi depot vehicle routing problem

The general plan in this chapter is as follows:

1- Create a model (Algeria problem) that contains the coordinates of warehouses and customers

using these coordinates.

2-apply the nearest specific distance algorithm in order to allocate each customer to his nearest

warehouse with the quantity of his goods.

3- ACO modification for VRPTW solution to deal with CMDVRP problem

4- Apply 2opt to improve results

 During this study, we used the MATLAB R2016a version to perform the experiments.

5.2.MATLAB Programming language and Environment

 Uses for MATLAB include matrix calculations, developing and running algorithms,

creating user interfaces (UI) and data visualization. The multi-Paradigm numerical computing

environment allows developers to interface with programs developed in different languages, which

makes it possible to harness the unique strengths of each language for various purposes.

 MATLAB is used by engineers and scientists in many fields such as image and signal

processing, communications, control systems for industry, smart grid design, robotics as well as

computational finance.

 Cleve Moler, a professor of Computer Science at the University of New Mexico, created

MATLAB in the 1970s to help his students. MATLAB's commercial potential was identified by

visiting engineer Jack little in 1983. Moler, Little and Steve Bangart founded MathWorks and

rewrote MATLAB in C under the auspices of their new company in 1984. [24]

39

MATLAB is an abbreviation of Matrix Laboratory. The current version; written in C by

MathWorks Inc; exists in the professional version and student version, its availability is ensured

on several platforms.

 MATLAB is a powerful, comprehensive, and easy-to-use environment for scientific

computing. It allows to perform numerical simulations based on numerical analysis algorithms or

generic algorithms.

 MATLAB is considered one of the best programming languages (C or Fortran), it has the

following particularities compared to these languages:

 – Easy programming;

 – Continuity among real and complex integer values;

 – Extended range of numbers and their precision;

 – Very comprehensive mathematical library;

 – GUI tool that includes GUI functions and utilities;

 – Possibility of linking with other classic programming languages (C or Fortran). [25]

figure 5. 1: MATLAB R2016a

40

5.3 Execution & Results:

In this section we test the implemented algorithm Hybrid ant colony optimization, through

multiple series of executions, through it we change the values of different parameters

(variables) and see the influence of each parameter on the results, also the best values of

parameters for the algorithm to obtain the better-optimized solutions.

5.3.1. The effect of changing the relative influence of the pheromone trails 𝛼

on the results

We went to take 3 different values of 𝛼 from 3 different fields, note that 𝛼 ranges o from [0,1]

divide the range into three fields to evaluate the algorithm with these fields. [0,0.33], [0.33,

0.66], [0.66, 0.99]

5.3.1.a)1st first set of 𝛼:

fix the values of the variables, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 100, Q = 1,

tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and put

𝛼 = 0.1 ∈[0,0.33]

Table 5. 1: statistics on the executions of 1st value 𝛼=0.1

Execution
s

Total cost of the overall solution Total Time of Execution

1 1010.1565 23.7898
2 1010.1565 23.2401
3 1010.1565 24.6054
4 1010.1565 25.947
5 1010.1565 24.704
6 1010.1565 24.4916
7 1010.1565 22.058
8 1010.1565 26.0759
9 1010.1565 23.4926

10 1010.1565 24.9774
Mean Sol 1010.1565 24.33818

41

5.3.1.b)2nd second set of 𝛼:

We fix the values of the variables, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 100,

Q = 1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and put

𝛼 = 0.5 ∈ [0.33,0.66] .

Table 5. 2: statistics on the executions of the 2nd value 𝛼=0.5

Execution
s

Total cost of the overall solution Total Time of Execution

1 1010.1565 17.8113
2 1010.1565 18.3991
3 1010.1565 18.5159
4 1010.1565 18.1879
5 1010.1565 17.0385
6 1010.1565 19.0805
7 1010.1565 16.8803
8 1010.1565 16.4054
9 1010.1565 17.7371

10 1010.1565 16.8966
Mean Sol 1010.1565 17.69526

5.3.1.c)3rd third set value of 𝛼:

fixing the values of the variables, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 100,

Q = 1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and change

𝛼 = 0.9 ∈ [0.33,0.66]

42

Table 5. 3: statistics on the executions of the 3rd value =0.9

Executios Total cost of the overall solution Total Time of Execution

1 1010.1565 16.6367
2 1010.1565 17.3166
3 1010.1565 16.7008
4 1010.1565 16.137
5 1010.1565 20.1036
6 1010.1565 18.7094
7 1010.1565 16.9421
8 1010.1565 19.3519
9 1010.1565 18.2672

10 1010.1565 18.264
Mean Sol 1010.1565 17.84293

Comment: the results stay the same in the 3 series of experiment .

Result: the variation of 𝛼 (relative influence of the pheromone trail) doesn’t affect on the

obtained solution from this algorithm , the solution is the same as is shown in the following

screenshots :

Figure 5.2: Depot 1 paths, the best solution obtained from the execution’s series of 𝛼

43

Figure 5.3: cost paths of depot 1 of the best solution obtained from the execution’s series

of 𝛼

Figure 5.4: Depot 2 paths ,the best solution obtained from the execution’s series of 𝛼

44

Figure 5.5: Depot 2 path costs of the best solution obtained from the execution’s series of

𝛼

Figure 5.6: Depot 3 paths of the best solution obtained from the execution’s series of 𝛼

45

figure 5.7: Depot 3 costs paths of the best solution obtained from the execution’s series of

𝛼

figure 5.8: Depot 4 paths of the best solution obtained from the execution’s series of 𝛼

46

figure 5.9: Depot 4 costs paths of the best solution obtained from the execution’s series of

𝛼

5.3.2. The effect of changing the visibility of edges 𝛽 on the results

we gone take 3 different values of 𝛽 from 3 different fields, note that 𝛼 it ranges [0,1]

divide the range into three fields to evaluate it [0,0.33], [0.33, 0.66], [0.66, 0.99]

5.3.1.a)1st first set of 𝛽 :

fixing the values of the variables, 𝛼 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 100,

Q = 1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and change

𝛽 = 0.1 ∈[0,0.33]

47

Table 5. 4: statistics on the executions of the 1st value =0.1

Executions Total cost of the overall solution Total Time of Execution
1 1010.1565 15.2697
2 1010.1565 16.1216
3 1010.1565 16.7182
4 1010.1565 16.7332
5 1010.1565 17.6527
6 1010.1565 18.366
7 1010.1565 19.3974
8 1010.1565 15.5569
9 1010.1565 18.3908

10 1010.1565 17.8099
Mean 1010.1565 17.20164

5.3.1.b)2nd second set of 𝛽:

fixing the values of the variables, 𝛼 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 100,

Q = 1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and change

𝛽 = 0.5 ∈ [0.33,0.66]

Table 5. 5: statistics on the executions of the 2nd value 𝛽 =0.5

Executions Total cost of the overall solution Total Time of Execution

1 1010.1565 15.5975
2 1010.1565 17.0728
3 1010.1565 15.1839
4 1010.1565 23.5654
5 1010.1565 17.4862
6 1010.1565 16.2271
7 1010.1565 19.4945
8 1010.1565 19.6949
9 1010.1565 14.9137

10 1010.1565 16.7355
Mean 1010.1565 17.59715

5.3.1.c)3rd third set value of 𝛽:

fixing the values of the variables, 𝛼 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 100, Q = 1,

tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and change

48

𝛽 = 0.9 ∈[0.33,0.66]

Table 5. 6: statistics on the executions of 3rd value 𝛽 =0.9

Executions Total cost of the overall solution Total Time of Execution

1 1010.1565 16.8437
2 1010.1565 16.5081
3 1010.1565 17.8804
4 1010.1565 16.5376
5 1010.1565 17.2613
6 1010.1565 18.3058
7 1010.1565 18.4801
8 1010.1565 19.0081
9 1010.1565 17.2116

10 1010.1565 15.4064
Mean 1010.1565 17.34431

5.3.3. The effect of changing the evaporation rate value on the results:

we will test the algorithm through series of execution in 3 fields of 𝜌 , rho range from [0,1]

3 fields :[0,0.33], [0,0.66], [0,1] and see the effect of the evaporation rate on the solutions

5.3.1.a)1st first set of 𝜌:

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity =

100, Q = 1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),and change 𝜌=0.33∈[0,0.33]

Table 5. 7: statistics of the executions1st value 𝜌=0.33

Executions Total cost of the overall solution Total Time of Execution
1 1010.1565 18.0996
2 1010.1565 14.7027
3 1010.1565 15.2463
4 1010.1565 15.9064
5 1010.1565 14.9029
6 1010.1565 15.0762
7 1010.1565 16.1177
8 1010.1565 14.9721
9 1010.1565 13.8988

10 1010.1565 15.0216
Mean 1010.1565 15.39443

5.3.1.b) Second 2nd set of 𝜌:

49

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65,

tau0=10*Q/(n_vertices*mean(model(idd).D(:)))

capacity= 100, Q = 1 ,and change 𝜌=0.66∈[0.33,0.66]:

Table 5. 8: statistics on the executions of the 2nd value 𝜌=0.66

Executions Total cost of the overall solution Total Time of Execution
1 1010.1565 15.0909
2 1010.1565 15.2307
3 1010.1565 14.6856
4 1010.1565 16.0694
5 1010.1565 15.2471
6 1010.1565 14.8648
7 1010.1565 14.7766
8 1010.1565 14.86
9 1010.1565 14.336

10 1010.1565 14.0195
Mean 1010.1565 14.8122

5.3.1.c) Third 3rd set of 𝜌:

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity =

100, tau0=10*Q/(n_vertices*mean(model(idd).D(:)))

and change Q = 1 ,𝜌=0.99∈[0.66,1]

Table 5. 9: statistics on the executions of the 3rd value =0.99

Executions Total cost of the overall solution Total Time of Execution

1 1010.1565 15.6629s
2 1010.1565 14.6609s
3 1010.1565 14.0819s
4 1010.1565 14.4726s
5 1010.1565 14.7744s
6 1010.1565 23.804s
7 1010.1565 14.4657s
8 1010.1565 16.882s
9 1010.1565 16.8814s

10 1010.1565 15.2762s
Mean 1010.157 16.0962s

The Comment: the results stays the same in the three sets of evaporation rate 𝜌 ∈[0,0.33] ||

[0,0.66] || [0,1] , as it shown in the following screenshots :

50

5.3.4. The effect of changing the control variable pf pheromone generation

Q value on the results

we will test 5 fields of Q

[0,0.33], [0,0.66], [0,1], [1,1,5], [1.5,2]

5.4.1.a)1st value of Q:

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity =

100, tau0=10*Q/(n_vertices*mean(model(idd).D(:)))and change Q=0.33∈[0,0.33]

Table 5. 10: statistics of the executions of 1st value of Q =0.33

Execution
s

Total cost of the overall solution Total Time of Execution

1 1010.1565 21.2079s
2 1010.1565 18.1624s
3 1010.1565 25.8393s
4 1010.1565 15.3289s
5 1010.1565 14.4834s
6 1010.1565 15.0083s
7 1010.1565 17.4731s
8 1010.1565 15.9019s
9 1010.1565 14.455s

10 1010.1565 12.8908s
Mean 1010.1565 17.0751s

5.4.1.b) 2nd value of Q:

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity =

100, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),and change Q = 0.66∈ [0.33,0.66]

51

Table 5. 11: statistics on the executions the 2nd value of Q =0.66

Executions Total cost of the overall solution Total Time of
Esxecution

1 1010.1565 15.5812s
2 1010.1565 14.2151s
3 1010.1565 14.9843s
4 1010.1565 12.8879s
5 1010.1565 14.4614s
6 1010.1565 16.8765s
7 1010.1565 15.3022s
8 1010.1565 15.4453s
9 1010.1565 16.2801s

10 1010.1565 15.2497s
Mean 1010.157 15.12837s

5.3.1.c)3rd third value of Q:

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity =

100, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),and change Q = 0.99∈ [0.66,1]

Table 5. 12: statistics on the executions 3rd set of Q =0.99

Executions Total cost of the overall solution Total Time of Execution
1 1010.1565 16.7151s
2 1010.1565 15.0589s
3 1010.1565 13.5972s
4 1010.1565 13.9565s
5 1010.1565 19.988s
6 1010.1565 15.5746s
7 1010.1565 16.2334s
8 1010.1565 15.0293s
9 1010.1565 13.9991s

10 1010.1565 13.6982s
Mean 1010.157 15.38503s

5.3.1.4)4th fourth value of Q:

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65,

capacity = 100, and change Q=1.5∈[1,1.5]

52

Table 5. 13: statistics on the executions of the 4th value Q =1.5

Executions Total cost of the overall solution Total Time of Execution
1 1010.1565 34.8313
2 1010.1565 28.9737
3 1010.1565 24.8756
4 1010.1565 15.7036
5 1010.1565 19.4109
6 1010.1565 19.3153
7 1010.1565 14.1405
8 1010.1565 16.3556
9 1010.1565 17.2548

10 1010.1565 16.0877
Mean 1010.157 20.6949

5.3.1.5)5th fifth value of Q:

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65,

capacity = 100, and change Q=1.99∈[1,2]

Table 5. 14: statistics on the executions 5th value Q =1.99

Executions Total cost of the overall solution Total Time of Execution
1 1010.1565 15.5704
2 1010.1565 17.6127
3 1010.1565 15.1352
4 1010.1565 14.1629
5 1010.1565 15.355
6 1010.1565 16.1742
7 1010.1565 15.1297
8 1010.1565 14.6963
9 1010.1565 15.7565

10 1010.1565 14.5887
Mean 1010.157 15.41816

The comment: the results stay the same when we change the value of generation pheromone

In the five fields [0,0.33], [0,0.66], [0,1], [1,1,5], [1.5,2] ,as shown in bellow screen shoots

of 𝛼 series figure:5.20 , 5.21 , 5.22, ……………..,5.27.

53

5.3.5. The effect of changing the initial pheromone 𝝉𝟎 on the results:

we will 3 test values of Initial pheromone 𝜏0 0.1, 0.5 , 1

 5.3.6.a)1st first value of 𝜏0:

 Fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity

= 100, Q=1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))), and change 𝜏0=0.1

Table 5. 15: statistics on the executions of the 1st value 𝜏0=0.1

Executions Total cost of the overall solution Total Time of Execution
1 1010.1565 16.7782
2 1010.1565 16.5702
3 1010.1565 16.5426
4 1010.1565 14.3073
5 1010.1565 15.5371
6 1010.1565 16.7037
7 1010.1565 14.5649
8 1010.1565 14.2499
9 1010.1565 14.7153

10 1010.1565 14.1418
Mean 1010.157 15.4111

5.3.6.b)2nd value of 𝜏0:

 fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65,

capacity = 100, Q=1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),and change 𝜏0=0.5

54

Table 5. 16: statistics on the executions of the 2nd value of 𝜏0=0.5

Executions Total cost of the overall solution Total Time of Execution
1 1010.1565 15.3326
2 1010.1565 15.4832
3 1010.1565 15.8016
4 1010.1565 15.6283
5 1010.1565 15.0656
6 1010.1565 14.7712
7 1010.1565 16.1916
8 1010.1565 16.2755
9 1010.1565 15.1233

10 1010.1565 17.3567
Mean 1010.157 15.70296

5.3.6.c)3rd value of 𝜏0:

 fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity

= 100, Q=1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))) and change 𝜏0=0.9

Table 5. 17: statistics on the executions of the 3rd set of 𝜏0=0.9

Executions Total cost of the overall solution Total Time of Execution
1 1010.1565 14.7282
2 1010.1565 16.2033
3 1010.1565 18.3834
4 1010.1565 14.9507
5 1010.1565 15.1325
6 1010.1565 17.1709
7 1010.1565 16.8718
8 1010.1565 22.8703
9 1010.1565 18.3755

10 1010.1565 15.2013
Mean 1010.157 16.98879

The comment: the results stay the same for the model, when we change the In

the initial pheromone doesn’t affect in the solution of this model

55

5.3.6. The effect of changing the capacity of vehicle on the results:

In this section we will test the algorithm with 3 different of capacity 50,100,150

Note that the requirements demands quantity range from 0-72

5.3.6.a)1st value of capacity <= maxdemand(72):

 Fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65,

capacity = 100, Q=1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),and change to

capacity=50

Figure 5.10: the error of the execution of the algorithm with capacity =50

The comment: Error in the code, note: that the used value of capacity of vehicle is 50 and

the quantity demands range from 0 to 72 .

5.4.6.b)2nd value of capacity=150 > maxdemand=72:

 fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65,

, Q=1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),and change to capacity=150

56

Table 5.18: statistics on the executions of the 2nd value of capacity =150

Execution
s

Total cost of the overall solution Total Time of Execution

1 849.4119 14.363
2 849.4119 14.6398
3 849.4119 17.4118
4 849.4119 14.973
5 849.4119 14.9699
6 849.4119 14.6453
7 849.4119 14.8868
8 849.4119 15.0072
9 849.4119 15.7647

10 849.4119 16.0156
Mean 849.4119 15.26771

comment: we notice change in routes of solution of the model, it optimized from the fixed

value of capacity which is 100, here we get solution with Total cost =849.4119

Which is optimized with 15 %, where we add about 50 % of the capacity of vehicle to

capacity of the vehicle capacity=150.

5.4.6.c)3rd value of capacity=250 :

 Fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65,

, Q=1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),and change to capacity=250

Table 5.19: statistics of the executions of the 3rd value of capacity =250

Executions Total cost of the overall solution Total Time of Execution
1 680.6695 13.2609
2 680.6695 14.4422
3 680.6695 13.8766
4 680.6695 14.172
5 680.6695 15.5273
6 680.6695 13.79
7 680.6695 18.6699
8 680.6695 17.1602
9 680.6695 15.3675

10 680.6695 13.6753
Mean 680.6695 14.99419

57

The comment: we notice change in routes of solution of the model, it optimized from the

fixed value of capacity which is 100, here we get solution with Total cost =849.4119

Which is optimized with 32 %, where where we add about 150 % of the capacity of vehicle

to capacity of the vehicle.

Result: we conclude that the capacity of the vehicle effect on the solutions, When we have

more capacity, we have improved solutions and better short routes, but the rule stops when the

capacity of the vehicle exceeds the quantity of the total quantity of goods for warehouse

customers.

The best solution gated from this variable is the following screenshots while that the

capacity is greater than the total quantity of demands of all customer of depot, capacity >=700:

figure 5.11: the best solution obtained from the execution’s series of capacity

,capacity>=700 ,Depot 1 paths

58

Figure 5.12: the best solution obtained from the execution’s series of capacity >=700

,depot 1 paths costs

Figure 5.13: the best solution obtained from the execution’s series of capacity>=700 ,depot 2

paths

59

Figure 5.14:the best solution obtained from the execution’s series of capacity paths

costs

Figure 5.15: the best solution obtained from the execution’s series of capacity >=700, depot

3 paths

60

Figure 5.16: the best solution obtained from the execution’s series of capacity

Figure 5.17: the best solution obtained from the execution’s series of capacity>=700,depot 4

paths

61

Figure 5.18: the best solution obtained from the execution’s series of capacity>=700, depot 4

paths costs

5.4.7. The effect of iteration number on the results

We went to take 3 different number of iterations 100 200 300, and see what it gone happen

to the results

5.4.1.a)1st first set of iteration number 100:

fix the values of the variables 𝛼 = 1 , 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity =

100, Q = 1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and put MaxIt=100.

table 5.20: statistics on the executions the 1st value of MaxIt=100

Execution
s

Total cost of the overall solution Total Time of Execution

1 1010.1565 57.1758
2 1010.1565 57.6817
3 1010.1565 60.023
4 1010.1565 61.4096
5 1010.1565 60.3484
6 1010.1565 60.4094
7 1010.1565 67.8658
8 1010.1565 60.2213
9 1010.1565 61.1555

62

10 1010.1565 58.9335
Mean Sol 1010.1565 60.5224

5.4.1.b)2nd second set of iteration number=200:

We fix the values of the variables 𝛼 = 1, 𝛽 = 1, nAnt = 40, 𝜌 = 0.65, capacity = 100, Q =

1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and put MaxIt = 200

table 5. 21: statistics on the executions of the 2nd value of MaxIt =200

Execution
s

Total cost of the overall solution Total Time of Execution

1 1010.1565 114.9441
2 1010.1565 116.0685
3 1010.1565 115.544
4 1010.1565 115.9665
5 1010.1565 118.7432
6 1010.1565 116.8357
7 1010.1565 118.1859
8 1010.1565 118.3734
9 1010.1565 125.2581

10 1010.1565 115.3633
Mean Sol 1010.1565 117.5283

5.4.1.c)3rd third set value of 𝛼:

We fix the values of the variables = 1, 𝛽 = 1, , nAnt = 40, 𝜌 = 0.65, capacity = 100,

Q = 1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and put MaxIt = 300

table 5.22: statistics on the executions of the 3rd value of MaxIt=300

Execution
s

Total cost of the overall solution Total Time of Execution

1 1010.1565 172.0173
2 1010.1565 168.5768
3 1010.1565 157.943
4 1010.1565 155.9208
5 1010.1565 162.7767
6 1010.1565 154.3833
7 1010.1565 166.4022
8 1010.1565 165.3653
9 1010.1565 160.5645

10 1010.1565 164.5689
Mean Sol 1010.1565 162.8519

63

Comment: the results stay the same in the 3 series of experiment .

Result: the number of iteration MaxIt doesn’t affect on the obtained solution from this

model with this implementation , the solution is the same as is shown in the following

screenshots :

5.5 conclusion

We conclude from the results that hybrid Ant Colony optimization algorithm can

effectively deal with multi depot vehicle routing problem and 2opt algorithm can improve the

time of search of the algorithm for the best solution tours and optimize it.

 With the recent used model of 4 depot we see that the capacity of vehicle can improve the

obtained solution by increasing the capacity of the vehicle we can solution with lower cost, but

for the other parameters we don’t see any difference in the total cost of the solution except for

iteration number can reduce the time of simulation (execution) , more the number of the

iteration is great more the execution time is longer , but it can make deference in other huge

model in the cost of solution , the same thing for the other setting it can obtain more accurate

solution .

64

General conclusion & Perspectives

In this report we have seen generalities in optimization, the methods of solving an optimization

problem, and some of the most common problems in optimization.

 and we explain the ant colony optimization algorithm, and we mention some of the

optimization techniques, nearest distance clustering, and local interchange operation.

 Hybrid Ant colony algorithms are one of the metaheuristic algorithms used to deal with vehicle

routing problems and their variants, it’s an algorithm inspired by the behaviour of ants forming a

super organism and which constitutes a family of optimization metaheuristics.

This algorithm is based on the Ant System algorithm, which is originally created for solving

the travelling salesman problem.

 MDVRP has wide application scenarios, In order to adapt the ACO, we implement a

hybrid ant colony optimization algorithm (HACO) to solve MDVRP. The HACO is based on ACO

solving VRP and the nearest distance cluster for dealing with a multi depot, meanwhile 2-Opt to

optimize routes

limits the implementation it doesn't obtain better cost after the 2-opt in the used models of

MDVRP created by the implementation and it needs powerful hardware

finally, we test the implemented algorithm through multiple series of executions, and we try to

determine the effect of changing the values of parameters of ACO, in order to obtain better

solutions and better values of parameters.

In the future and as a perspective, it will be interesting to the Dynamic aspect of this work

because the VRP problem in the real is dynamic and variable and the services of delivery it

obligate to considering the service hour and time constraints required by customers.

65

References

[1] Paper A Hybrid Ant Colony Optimization for Dynamic Multidepot Vehicle Routing

Problem School of Computer Science and Technology ,Hangzhou

Dianzi University ,Hangzhou , China 2018

[2] BAYOU Abdelwahab BENSEFIA Amir A HYBRID ALGORITH (Aco-2opt) for solving

the traveling salesman problem. El Bachir El Ibrahimi - BBA 2020/2021

[3] Bara Houria SUBJECT Development and implementation of a hybrid method for solving

the quadratic assignment problem Universite Mohamed Boudiaf - M’sila 2019 .

[4] Combinatorial optimization and railway infrastructure capacity problemsXavier

Delormeen 2003 à Valenciennes

[5] Catherine Mancel. Modelling and solving combinatorial optimization problems arising

from space applications. Automatic / Robotic. Toulouse INSA, 2004

[6] (PDF) Vehicle routing problem: Models and solutions (researchgate.net), Date:04/06/2022

4:15

[7] Takwa Tlili, Sami Faiz, Saoussen,” on Solving the multi depot vehicle routing problem”,

ReasearchGate,vol16.

[8] Haitao Xu,Pan Pu,and Feng Duan “A Hybrid Ant Colony Optimization for Dynamic Multi

Depot Vehicle Routing Problem ,Hindawi research article,vol 18 ,pp2-5

[9] https://www.linkedin.com/pulse/vehicle-routing-problem-its-variants-sajaykumar-j/ Date:

11:40 06/04/2022

[10]Christian Blum Ant colony optimization: Introduction and recent trends 1 ALBCOM, LSI,

Universitat Politècnica de Catalunya, 2005

[11] Marco Dorigo Thomas StÜtzle, Ant Colony Optimization Massachusetts Institute of

Technology A Bradford Book The MIT Press Cambridge, Massachusetts London, England

2004

https://www.researchgate.net/publication/313005083_Vehicle_routing_problem_Models_and_solutions
https://www.linkedin.com/pulse/vehicle-routing-problem-its-variants-sajaykumar-j/

66

[13]12 Ant Colony Optimization: A Swarm Intelligence based Technique International Journal

of Computer Applications (0975 – 8887) Volume 73– No.10, July 2013

[14]https://www.vocabulary.com/dictionary/ant#:~:text=An%20ant%20is%20an%20insect,d

ivided%20into%20jobs%20or%20castes Date19:30 12/04/2022.

[15]https://www.researchgate.net/figure/Analogy-between-Natural-and-Artificial-

Ants_tbl1_265161384date10:30 17/04/2022

[16]https://www.sciencedirect.com/topics/engineering/ant-colony-optimization,

Date:06/06/22 11:52

[17]https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/qtc2.12023 Date:05/04/2022

10:15

[18]https://towardsdatascience.com/the-inspiration-of-an-ant-colony-optimization-f377568ea03f,

consultation Date : 11/05/2022 13 :23

[19]https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms,Date:11/05/2022

17 :15 PM

[20] Rafsanjani, Zahra Asghari Varzaneh Marjan Kuchaki “Edge detection in digital images

using Ant Colony Optimization’’,Computer Science Journal of Moldova, vol.23, no.3(69),

2015

[21] R. van der Put “Routing in the faxfactory using mobile agents”. Technical Report R&D-

SV-98-276, KPN Research, 1998

[22] Dorigo Marco,Stützle, Thomas,Darmstadt, Tu,Group, IntellecticsThe Ant Colony

Optimization Metaheuristic: Algorithms, Applications, and Advances, ResearchGate,March

2001

[23] HaitaoXu,PanPu,FengDuan “A Hybrid Ant Colony Optimization for Dynamic Multidepot

Vehicle Routing Problem”,Hindawi,pp3-9,Volume2018,id3624728

 [24] https://www.techtarget.com/whatis/definition/MATLAB

 [25] Kenza Bechtoula,Hadjer Bouguerra. Algorithme hybride (aco-ape) pour La Résolution

du problème de Voyageur de commerce El Bachir El Ibrahimi 2020/2021

[26] https://www.pestworld.org/pest-guide/ants/ Date:11/05/2022 13 :15 PM

https://www.vocabulary.com/dictionary/ant#:~:text=An%20ant%20is%20an%20insect
https://www.researchgate.net/figure/Analogy-between-Natural-and-Artificial-Ants_tbl1_265161384
https://www.researchgate.net/figure/Analogy-between-Natural-and-Artificial-Ants_tbl1_265161384
https://www.sciencedirect.com/topics/engineering/ant-colony-optimization,
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/qtc2.12023
https://towardsdatascience.com/the-inspiration-of-an-ant-colony-optimization-f377568ea03f,%20consultation
https://towardsdatascience.com/the-inspiration-of-an-ant-colony-optimization-f377568ea03f,%20consultation
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
https://www.techtarget.com/whatis/definition/MATLAB

67

[27] Jianping Wang practicum submitted to the Faculty of Graduate Studies of The University

of Manitoba 2008

68

Appendix A

implementation of Hybrid Ant Colony optimization

for CMDVRP

A.1. Definition of the used map:

A.1.1 Definition of the used map:

Figure A.1: Definition of the map Algeria provinces

 This script represents the definition of the Algeria model the first column 1 represents the

indices

Column 2: represents the X coordinates, Column 3: represent the Y coordinates of provinces

used the map. , the 4th Column represents the required quantity of goods for each customer .

69

A.2.Creation of the model used by H-ACO for CMDVRP:

Figure A.2:part1 of creation model script

In this part we define the structure of the model ,which will give to aco algorithm .

Figure A.3:part2 of creation model script

In this part we read the X and Y coordinates of depot f customers and their demand

obtained from clustering function ,and we initialize some matrix to handle with the model .(see

the comments in the figures for more detail)

70

Figure A.4:part3 of creation model script

Part 3 creation model : define some variable to return it in with the model struct ,to know

the served customers

Figure A.5:part4 of creation model script

71

This part of the script generates initial routes after checking the possibility of generating these

routes according to the capacity and disponibility constraints of the vehicle, it also checks if each

customer is served in these routes.

Figure A.6:part5 of creation model script

In the end of each iteration for each submodel (depot + their customers) we return the results

(initial routes) in defended struct model.

figure 5. SEQ figure_5. * ARABIC 6:part4 of creation model script

72

A.3.Nearest Distance Clustering function:

Figure A.7:part1 of Clustering function script

this part 1 of clustering algorithm define the struct of depot, which contain x and y

coordinates matrixes of the customers and the depots it self in the first columns the name of

clustered provinces in willaya matrix also their demands for each depot ,each depot with their

results of clustering is in the struct depots represent a row in these struct .

Also, we define the distance matrix between the selected warehouses and customers for the

collection process.

73

Figure A.8:part2 of Clustering function script

Part 2 clustering function: first of all calculate the vector M_min wich contain the minimum

column of each column of the matrix of distance between depots and customers to use it later

,also it initializes the depots struct , also it affect the depot to x and y customer coordinate to

handle with it like a final customer to visit it.

Figure A.9:part3 of Clustering function script

Part 3 clustering function : define matrice_indice matrix to permit each clustered customer

to depots matrix ,also it do the clustering process by using the M_min vector wich contain the

minimum value between each customer and the depots ,these values allow to get the nearest

depot by searching in the matrix distance of (depot_customer) of the indice the this value which

is the indice of the nearest depot (see it in the next part).

74

Figure A.10:part4 of Clustering function script

Part 4 clustering function: in this part we get the names of provinces and their demand from

the big model, by selecting the indices of the same X and Y coordinates of the clustered

customers in the big model by find function.

In the end of this clustering function, we give the results to create model function which

generate initial routes with these results.

A.3. HACO for MDVRP:

This implementation is modified from VRPTW script and adapted to be useful to the multi

depot vehicle routing problem by clustering function , fusing with 2 opt function to get more

optimized results ,2-opt can be effective for the big datasets in term of iteration and execution

time .

75

Figure A.11:H_ACO for MDVRP part1

Figure A.12:H_ACO for MDVRP part2

76

Figure A.13:H_ACO for MDVRP part3

Figure A.14:H_ACO for MDVRP part4

77

Figure A.15:H_ACO for MDVRP part5

 Figure A.16:H_ACO for MDVRP part6

78

A.4. 2exchange fonction (2-opt):

Figure A.17:2-opt script part1

Figure A.18:2-opt script part2

79

After finding each best solution tour in the end of all iteration, we try to optimize this tour

by 2 opt, which exchange all possible pairwise of edges until the tour be optimized, if the tour

is not optimizable the function lets the same tour.

