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Abstract 

 

The electronic band structure calculation for semi-conductors is very helpful in knowing their 

proprieties. In this thesis, the electronic band structure for 3 diamond structures crystals: 

Silicon (Si), Germanium (Ge), Tin (Sn), and 3 zincblende structure: Aluminum antimonide 

(AlSb) , Gallium phosphide (GaP) , Gallium arsenide (GaAs) is calculated . We choose to use 

the Empirical Pseudopotential Method with the same model adopted by Cohen and 

bergstresser. The model is coded using Fortran programing language and the diagonaliztion is 

elaborated using LAPACK libraries. 

 

Résumé 

Le calcul de la structure de bande électronique pour les semi-conducteurs est très utile pour 

connaître leurs caractéristiques. Dans cette thèse, la structure de bande électronique pour 3 

cristaux de structures de diamant : Silicium (Si), Germanium (Ge), Étain (Sn), et 3 structures 

de zincblende : Antimoniure d’aluminium (AlSb), Phosphure de Gallium (GaP), Arséniure de 

Gallium (GaAs) est calculée. Nous choisissons d’utiliser la méthode pseudopotentielle 

empirique avec le même modèle adopté par Cohen et bergstresser. Le modèle est codé à l’aide 

du langage de programmation Fortran et la diagonale est élaborée à l’aide des bibliothèques 

LAPACK. 

 

 

 

 

 



 iv  

 

Content 
 

Introduction ......................................................................................................................... 1 

Chapter 1: Structures and Lattices ....................................................................................... 3 

1.1. Introduction ............................................................................................................ 3 

1.2. Crystalline structure .................................................................................................... 3 

1.2.1. The set of translation and the bravais lattice ........................................................... 3 

1.2.2. Atom basis ............................................................................................................ 5 

   1.2.2.1. Diamond structure ........................................................................................... 6 

   1.2.2.2. Zincblende structure ........................................................................................ 6 

1.3. Reciprocal lattice ........................................................................................................ 7 

1.3.1. Construction ......................................................................................................... 7 

1.3.2. Brillouin zone: ...................................................................................................... 9 

1.4. Periodic potential and Bloch theorem ........................................................................ 11 

1.5. Conclusion ............................................................................................................... 13 

Chapter 2: Empirical pseudopotential method ................................................................... 14 

2.1. Introduction .............................................................................................................. 14 

2.2. Theoretical basis ....................................................................................................... 14 

2.3. The empirical pseudopotential method ...................................................................... 15 

2.3.1 Element of the pseudopotetials ............................................................................. 16 

2.3.2. Orthogonalized plane waves (OPW) .................................................................... 16 

2.3.3. Solution of the pseudo-Hamiltonian .................................................................... 19 

2.3.4. Choice of the pseudopotential ............................................................................. 21 

2.3.5. The local pseudopotential .................................................................................... 22 

2.3.6. The non-local pseudopotential ............................................................................. 22 

2.3.7. spin orbit coupling .............................................................................................. 23 

2.4. Fitting of the pseudopotentials ................................................................................... 24 

2.5. Output of the EPM ................................................................................................... 25 

2.6. Conclusion ............................................................................................................... 27 

Chapter 3: Implementation, results, and discussion ........................................................... 28 

3.1. Introduction .............................................................................................................. 28 

3.2. Technical details ....................................................................................................... 28 

3.2.1. Fortran programing language .............................................................................. 28 

3.2.2. Diagonalization with LAPACK libraries ............................................................. 29 

3.3. Implementation strategy ............................................................................................ 30 

3.3.1. Summary  of the formulations ............................................................................. 30 



 v  

 

3.3.2. Number of the plane waves and the cutoff energy ................................................ 31 

3.3.3. Symmetric and antisymmetric contributions to the potentials ............................... 31 

3.3.4. Bands structure calculation .................................................................................. 32 

3.3.5. Charge density .................................................................................................... 32 

3.3.6. Architecture of the program................................................................................. 33 

3.4. Results and evaluation .............................................................................................. 34 

3.4.1. Diamond structure .............................................................................................. 34 

   3.4.1.1. Silicon (Si) ..................................................................................................... 34 

   3.4.1.2. Germanium (Ge) ........................................................................................... 35 

   3.4.1.3. Tin (Sn) ......................................................................................................... 35 

3.4.2. Zincblende structure ............................................................................................ 36 

   3.4.2.1. Gallium phosphide (GaP) .............................................................................. 36 

   3.4.2.2. Gallium arsenide (GaAs) ............................................................................... 37 

   3.4.2. 3. Aluminum antimonide (AlSb) ....................................................................... 37 

3.5. Conclusion ............................................................................................................... 38 

Conclusion ......................................................................................................................... 39 

Bibliography ...................................................................................................................... 40 

Appendix ........................................................................................................................... 42 

 

 

 



Introduction 

 1  

 

 

Introduction 

 

Semi-conductors nowadays are the most active and exciting research area. Indeed 

semiconductors are the most interesting materials ever discovered by humans. They are the 

heart of the modern world, due to their characteristics and properties which made them very 

useful in the technological industry. It is hard to find an integrated circuit or a modern device 

that is not based on semiconductors. This revolution starts in 1947, when the bipolar junction 

transistor first was invented, which opened new doors for the electronics industry and helps to 

improve the ability of  devices like computers  and cell phones.  They can also be used  in 

optoelectronic applications; diodes for example which are made of a PN junction are useful in 

light emission and reception in form of LED. Plenty of other applications can  be given and 

upon which number of industries are built. Consequently it is necessary to study the properties 

of semiconductors and determine how they behave in deferent conditions. One of the most 

interesting properties of metals and semiconductors is the electronic band structure. Knowing 

the band structure of metals or semiconductors helps us  to understand how the transport of 

electrons happens in devices made from those materials. It also helps in relating optical and 

electronic properties . 

In order to calculate the electronic band structure, there are two basic approaches: “ab initio” 

and the empirical methods. Ab initio, or “from the beginning" methods involve calculation of 

band structure by use of first principles without using measured data. Empirical methods take 

advantage of experimental data to give more accurate band structure representation. 

Generally, ab initio methods are very intensive calculations but give better insight on how the 

structure is built. Both methods have their place in calculating and engineering transport 

properties in semiconductor devices. In this master project however, we are interested only in 

the empirical methods, especially the empirical pseudopotential method which is noted as 

EPM. 

The pseudopotential term was first introduced by Fermi to study high-lying atomic states. 

Afterwards, Hellman proposed that pseudopotentials can be used for calculating the energy 

levels of the alkali metals. The wide spread usage of pseudopotentials did not occur until the 

late 1950s , when the research in condensed matter area began to accelerate. The main 

advantage of the previously mentioned method is that only valence electrons have to be 

considered, the core electrons are treated as if they are frozen in an atomic-like configuration. 
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As a result, the valence electrons are thought to move in a weak one electron potential. It also 

gives surprisingly accurate results considering the computing time and involved effort. 

 

We are interested in this project by reviewing the psodeupotential approach, establishing the 

model that capture the main concepts. Afterwards the model is coded using Fortran language. 

The aim from one end is to show the simplicity of such a task using Lapack libraries and from 

another end is to prove the effectiveness of such an approach in the case of several 

semiconductors. It can be argued that such an approach is quite overtaken by all the details 

given by the ab initio calculations, however it is easy to understand the power of this approach 

when we notice that even in the framework of ab initio models, pseudopential approach is 

unavoidable in order to make the calculations tractable.   

Our master report is accordingly organized as follows: 

-In a first chapter we revisit the most important concepts of semiconductors, concepts that are 

important to understand the coming progression of our work. 

-In a second chapter we develop the theoretical framework of the pseudopotential approach. 

-In the third chapter we present our coding of the theoretical model. An evaluation of the 

program in different cases, reached results as well as our comments are also detailed. 

- In a final conclusion we summarize the main scope of the work and the most important 

established results. 
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Chapter 1: Structures and Lattices 
 

1.1. Introduction 
 

Dealing with semiconductors lead us unavoidably to expose the main basis of solid state 

physics. In fact the crystalline structure of semiconductors are regular patterns that have 

several features in common. We are going to expose some of those features as an introductive 

part for the pseudopotential approach.    

1.2. Crystalline structure 
 

Crystalline structure is a description of the ordered arrangement of atoms, ions or molecules 

in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent 

particles to form symmetric patterns that repeat along the principal directions of three 

dimensional space in matter. The unit cell of the structure is the smallest group of particles in 

the material that constitutes this repeated symmetrical pattern.  It completely reflects the 

symmetry and structure of the entire crystal, which is built up by repetitive translation of the 

unit cell along its principal axes. The lengths of the principal axes of the unit cell and the 

angles between them are called lattice constants. 

The positions and types of atoms in the primitive cell are called the basis. The set of 

translations, which generates the entire periodic crystal by repeating the basis, is a lattice of 

points in space called the Bravais lattice. So a crystal is defined by: 

Crystal structure = Bravais lattice +basis 

The Bravais lattice gives the well known patterns as cubic, body centered cubic, face centered 

cubic, diamond...structures. 

The crystalline order is described by its symmetry operations. The set of translations forms a 

group because the sum of any two translations is another translation. In addition there may be 

other point operations that leave the crystal unchanged, such as rotations, reflections, and 

inversions. This can be summarized as[1]: 

Space group = translation group + point group 

 

1.2.1. The set of translation and the bravais lattice 
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The set of all translation forms the Bravais lattice in space, in which any translation can be 

defined by:   𝑇(𝑛) = ∑ 𝑛𝑖𝑎𝑖
𝑑
𝑖=1  ,Where d is the dimension of the space, 𝑎𝑖 are the primitive 

translations vectors, in three dimensions, the set of translations is written this way: 

                                𝑇(𝑛) =  𝑛1𝑎1  +  𝑛2𝑎2 +  𝑛3𝑎3                                    (1.1) 

These are the primitive vectors for some common Bravais lattice, (in units of a) [1]: 

 

Face centered cubic (fcc) :  𝑎1  = (0,
1

2
,
1

2
),      𝑎2  = (

1

2
, 0,

1

2
) ,     𝑎3  = (

1

2
,
1

2
, 0) 

Body centered cubic (bcc): 𝑎1  = (−
1

2
,
1

2
,
1

2
) , 𝑎2  = (

1

2
, −

1

2
,
1

2
) , 𝑎3  = (

1

2
,
1

2
, −

1

2
)   (1.2) 

Simple cubic:                      𝑎1 = (1,0,0) ,         𝑎2  = (0,1,0),        𝑎3  = (0,0,1) 

     Simple hexagonal:              𝑎1  = (1,0,0) ,       𝑎2  = (
1

2
,
√3

2
, 0) ,   𝑎3  = (0,0,

𝑐

𝑎
) 

 

The fcc structure is shown in fig1.1. The figure shows one possible choice of the primitive 

lattice vectors and the parallelepiped primitive cell,  the wigner-seitz cell which is the first 

brillouin zone is also illustrated. 

 

fig1.1: the fcc primitive cell and lattice vectors (left), the wigner-seitz cell for fcc(right). 
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fig1.2: the bcc primitive cell and lattice vectors (left) ,the bcc Wigner Seitz cell (right ) . 

 

The volume of any primitive cell must be the same, since the translation of any such cell fill 

up all the space, so the most convenient choice of a cell in which to express the volume is the 

parallelepiped cell shown in fig1.1, the volume of the primitive cell defined by primitive vectors 

Ω𝒄𝒆𝒍𝒍 can be calculated this way: 

                                          Ω𝒄𝒆𝒍𝒍 = |𝑎1  . (𝑎2 × 𝑎3)|                                     (1.3) 

 

1.2.2. Atom basis 

 

The basis describes the position of atoms in each cell relative to a chosen origin, if there are 

S atoms per cell , then  the basis of atoms is specified by the atomic position vectors 𝜏𝑠, where 

S varies from 1 to S. We can also represent the atomic position vectors in terms of primitive 

lattice vectors a, they can be written this way [1]: 

                                       𝜏𝑠 = ∑ 𝜏𝑠𝑖
𝐿𝑑

𝑖=1 𝑎𝑖                                   (1.4) 

Where L denotes the representation in lattice vectors, d is the dimension.  

For our calculations, we are interested in the crystalline structure of silicon, which has 

diamond structure. The calculation are also carried in another step for the zincblende 

structure. Consequently we will study in some details those two structures. 
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1.2.2.1. Diamond structure 

 

The diamond structure is fcc lattice constituted of two identical atoms per unit cell. Some 

common semiconductors have this structure such as silicon and germanium. A bond center is 

the appropriate choice of origin for the diamond structure since this is a center of inversion 

symmetry. By shifting the origin, the vectors are written this way (in units of a) [1]: 

                                               𝜏1 = −(
1

8
 ,

1

8
  ,

1

8
)                                         (1.5) 

   𝜏2 = (
1

8
 ,
1

8
  ,

1

8
) 

in terms of primitive lattice vectors: 

                                                                 𝜏1
𝐿 = −[

1

8
 ,

1

8
  ,

1

8
]                                        (1.6) 

𝜏2
𝐿 = [

1

8
 ,
1

8
  ,

1

8
] 

 

1.2.2.2. Zincblende structure 

 

The zincblende structure is the structure of many III-V and II-VI crystals such as GaAs and 

ZnS. This crystal is fcc lattice with two atoms per unit cell. Although there is no center of 

inversion in a zincblende structure crystal, each atom is at a center of tetrahedral symmetry 

[1]. Since the unit cell contains two non-identical atoms, we can place the origin at one atom, 

the atomic position vectors (in units of a) are: 

                                              𝜏1 = −(
1

8
 ,

1

8
  ,

1

8
)                                         (1.7) 

𝜏2 = (
1

8
 ,
1

8
  ,

1

8
) 

in terms of primitive lattice vectors , one can find that: 

                                      𝜏1
𝐿 = − [

1

8
 ,

1

8
  ,

1

8
]                                  (1.8) 

𝜏2
𝐿 = [

1

8
 ,
1

8
  ,

1

8
] 
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fig 1.3 : the zincblende structure and diamond structure 

1.3. Reciprocal lattice 
 

The reciprocal lattice is the Fourier transform of the real Bravais lattice, the initial lattice 

(direct lattice) is a periodic spatial function in the real space. We can say that the reciprocal 

lattice is a representation of the real lattice in K-space (reciprocal space). The reciprocal of a 

reciprocal lattice is the original direct lattice.  

1.3.1. Construction 
 

consider any function 𝑓(𝑟) defined for the crystal (ex: the density of the electron ) , which is 

the same in each unit cell , this means that : 

                                   𝑓(𝑟 + 𝑇𝑛) = 𝑓(𝑟)                                                    (1.9) 

Where 𝑇𝑛 can be any translation. Such a periodic function can be represented by Fourier 

transforms in terms of Fourier components at wavevectors q defined in reciprocal space. The 

formulas can be written most simply in terms of a discrete set of Fourier components if we 

restrict the Fourier  components to those that are periodic in a large volume of crystal 

Ω𝒄𝒓𝒚𝒔𝒕𝒂𝒍composed of  𝑁𝑐𝑒𝑙𝑙[1]. then each component should satisfy the born-von Karmen 

boundary conditions in each dimension :  

                           𝑒𝑖𝑞.𝑁1𝑎1 = 𝑒𝑖𝑞.𝑁2𝑎2=𝑒𝑖𝑞.𝑁3𝑎3= 1                                      (1.10) 

Where N represents the number of unit cells in each direction. 

So that q is restricted to the set of vector satisfying: 

Diamond                        Zincblende

other views of the cubic unit cell

Si, Ge GaAs

2τ
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𝑞. 𝑎1 = 2𝜋
𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝑁1
 

                                                             𝑞. 𝑎2 = 2𝜋
𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝑁2
                                        (1.11) 

𝑞. 𝑎3 = 2𝜋
𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝑁3
 

The final result should be independent from the particular choice of boundary conditions in 

the limit of large volume Ω𝒄𝒓𝒚𝒔𝒕𝒂𝒍. 

The Fourier transform is written this way: 

                                            𝑓(𝑞) =
1

Ω𝒄𝒓𝒚𝒔𝒕𝒂𝒍
∫ 𝒅𝑟𝑓(𝑟)

 

Ω𝒄𝒓𝒚𝒔𝒕𝒂𝒍
𝑒𝑖𝑞.𝑟                             (1.12) 

Which, for periodic functions, can be written : 

                                    𝑓(𝑞) =
1

𝑁𝑐𝑒𝑙𝑙
∑ 𝑒𝑖𝑞.𝑇𝑛𝑑

𝑛=1
1

Ω𝒄𝒆𝒍𝒍
∫ 𝒅𝑟𝑓(𝑟)

 

Ω𝒄𝒆𝒍𝒍
𝑒𝑖𝑞.𝑟                   (1.13) 

The sum over all lattice points vanishes for all q except those that satisfy 𝑞. 𝑇𝑛 = 2𝜋 ×

𝑖𝑛𝑡𝑒𝑔𝑒𝑟 for all translations T. Since 𝑇(𝑛) = ∑ 𝑛𝑖𝑎𝑖
𝑑
𝑖=1   , we can write: 

                                                             𝑞. 𝑎𝑖 = 2𝜋 × 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                                  (1.14) 

The set of the Fourier components that satisfy this condition forms the reciprocal lattice , if 

we define the vectors 𝑏𝑖 where i varies from 1 to d , that are reciprocal to the primitive 

translation vectors 𝑎𝑖 , we can write : 

                                                               𝑏𝑖. 𝑎𝑗 = 2𝜋𝛿𝑖𝑗                                             (1.15) 

Where 𝛿𝑖𝑗 is Kronecker symbol. 

The only non-zero Fourier components for 𝑓(𝑟) are for  , where the G vectors are a lattice of 

points in reciprocal space defined by : 

 

                                             𝐺𝑚 = ∑ 𝑚𝑖𝑏𝑖
𝑑
𝑖=1                                             (1.16) 

For each G  , the Fourier transform of the periodic function can be written : 

                                    𝑓(𝐺) =
1

Ω𝒄𝒆𝒍𝒍
∫ 𝒅𝑟𝑓(𝑟)

 

Ω𝒄𝒆𝒍𝒍
𝑒𝑖𝐺.𝑟                             (1.17) 
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The mutually reciprocal relation of the Bravais lattice in real space and the reciprocal lattice 

becomes apparent using matrix notation that is valid in any dimension. If we define the square 

matrix 𝑏𝑖𝑗 = (𝑏𝑖)𝑗 , then primitive vectors are related by : 

                                   𝑏𝑇𝑎 = 2𝜋𝟏 → 𝑏 = 2𝜋(𝑎𝑇)−1                                (1.18) 

 As a result, the reciprocal primitive vectors 𝑏𝑖 can be calculated directly in terms of direct 

lattice vectors using the following equivalent expressions [1]: 

𝑏1 =
2𝜋

Ω𝒄𝒆𝒍𝒍
𝑎2 × 𝑎3 

                                                              𝑏2 =
2𝜋

Ω𝒄𝒆𝒍𝒍
𝑎3 × 𝑎1                                       (1.19) 

𝑏3 =
2𝜋

Ω𝒄𝒆𝒍𝒍
𝑎1 × 𝑎2 

 

One can show that the reciprocal lattice of simple cubic structure is a simple cubic ,The 

cubic face centered and the cubic body centered are reciprocal to each other , the primitive 

vectors  of reciprocal lattice for the cubic face centered lattice are given by ( in units of 
2𝜋

𝒂
): 

                                                                  𝑏1 = (−1 , 1, 1) 

                                                 𝑏2 = (1 , − 1, 1)                                      (1.20) 

                                                                  𝑏3 = (1 , 1, −1) 

1.3.2. Brillouin zone:  
 

The first brillouin zone is the Wigner-Seitz cell of the reciprocal lattice. The planes that are 

the perpendicular bisectors of the vectors from the origin to the reciprocal lattice points define 

the Wigner Seitz cell.  The construction of the BZ of some common bravais lattices is 

illustrated in fig 1.4, and the widely used notations for points in the BZ of the face centered 

cubic are given in fig 1.5 . 
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fig 1.4 : brillouin zone for some common bravais lattice and the widely used symmetry 

points for each zone 

 

 

 

fig 1.5: high-symmetry points for the fcc lattice 
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High symmetry point and lines (shown in fig 1.4) are labeled according to Bouckaret, 

Smoluchowski, and Wigner [2]. The zone center (k =0) is designated Γ and interior lines by 

Greek letters, points on the zone boundary by Roman letters. In the case of the fcc lattice, a 

portion of a neighboring cell is represented by dotted lines. This shows the orientation of 

neighboring cells that provides useful information, for example that the line ∑ from Γ to K 

continues to a point outside the first BZ that is equivalent to X.  

1.4. Periodic potential and Bloch theorem 
 

The properties of an electron in a periodic potential can be described using Bloch’s wave 

function, which have the following form: 

                                        𝜓𝑘(𝑟) = 𝑈𝑘(𝑟)𝑒
𝑖𝑘𝑟                                           (1.21)  

Where 𝑈𝑘(𝑟) is periodic (𝑈𝑘(𝑟 + 𝑇𝑛) = 𝑈𝑘(𝑟) ), 𝑇𝑛 could be any translation in the real space 

𝑇𝑛 =  𝑛1𝑎1  +  𝑛2𝑎2 +  𝑛3𝑎3. 

We can verify that Bloch function is an eigenfunction for the Hamiltonian with a periodic 

potential. To simplify things, we consider the one dimensional chain constituted of  N atoms , 

with a lattice constant a  , the Hamiltonian is given by : 

                                     𝐻̂ = [
−ℏ2

2𝑚0
𝛻2 + 𝑉(𝑥)]                                          (1.22) 

Where 𝑉(𝑥) is the periodic potential: 

                                       𝑉(𝑥 + 𝑎) = 𝑉(𝑥)                                               (1.23) 

Consider the translation operator 𝑇̂ , when  𝑇̂ applied to 𝜓𝑘(𝑥)  gives : 

                                     𝑇̂𝜓𝑘(𝑥) = 𝜓𝑘(𝑥 + 𝑎)                                          (1.24) 

First, we need to prove that 𝜓𝑘(𝑥)  is an eigenfunction of 𝑇̂ . Then, we prove that the 

translation operator 𝑇̂ and the Hamiltonian 𝐻̂ commute. So, Bloch’s wavefunction is similarly 

an eigenfunction for the Hamiltonian with a periodic potential . 

We need to find 𝜆 the eigenvalues of the translation operator 𝑇̂ : 

                                     𝑇̂𝜓𝑘(𝑥) = 𝜆𝜓𝑘(𝑥)                                               (1.25) 

If we apply 𝑇̂on 𝜓𝑘(𝑥)N times, and with periodic boundary conditions , one can find that : 

                                                𝑇̂𝑁𝜓𝑘(𝑥) = 𝜓𝑘(𝑥 + 𝑁𝑎) = 𝜓𝑘(𝑥)                           (1.26) 
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From (1.22) , we can write : 

                                      𝑇̂𝑁𝜓𝑘(𝑥) = 𝜆𝑁𝜓𝑘(𝑥)                                         (1.27) 

Which gives: 

                                                     𝜆𝑁 = 1 → 𝜆 = 𝑒
2𝜋𝑛

𝑁                                               (1.28) 

Where = ±1,±2… . 

Now, we can prove that 𝜓𝑘(𝑥) is an eigenfunction of the Hamiltonian by proving that 𝐻̂and 

𝑇̂commute: 

𝑇̂𝐻̂𝜓𝑘(𝑥) = 𝑇̂[
−ℏ2

2𝑚0
𝛻2 + 𝑉(𝑥)]𝜓𝑘(𝑥) 

= [
−ℏ2

2𝑚0

𝑑2

𝑑(𝑥 + 𝑎)2
+ 𝑉(𝑥 + 𝑎)]𝜓𝑘(𝑥 + 𝑎) 

                                    = [
−ℏ2

2𝑚0

𝑑2

𝑑𝑥2 + 𝑉(𝑥)] 𝑇̂𝜓𝑘(𝑥) 

                                             = 𝐻̂𝑇̂𝜓𝑘(𝑥)                                                                   (1.29)         

So, the Hamiltonian commutes with the translation operator, which means that Bloch’s 

function is an eigenfunction of the Hamiltonian stated in (1.20). We can write: 

𝜓𝑘(𝑥 + 𝑎) = 𝑈𝑘(𝑥 + 𝑎)𝑒𝑖𝑘(𝑥+𝑎) = 𝑒𝑖𝑘𝑎𝑈𝑘(𝑥)𝑒𝑖𝑘𝑥 = 𝑒𝑖𝑘𝑎𝜓𝑘(𝑥)          (1.30) 

In three dimensions: 

                                     𝜓𝑘(𝑟 + 𝑇𝑛) = 𝑒𝑖𝑘.𝑇𝑛𝜓𝑘(𝑟)                                  (1.31) 

The eigenstates of the translation operator varies from one cell to another in the crystal with 

the phase factor 𝑒𝑖𝑘𝑇𝑛, The eigenstates of any periodic operator, such as the Hamiltonian, can 

be chosen with a definite values of k [3]. 

 

fig 1.6: schematic illustration of Bloch’s function in one dimension 
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fig 1.6 shows a schematic illustration of Bloch’s function in one dimension at k=0 and at the 

zone boundary k=𝜋
𝑎⁄  ,The envelope is the smooth function that multiplies a periodic array of 

atomic like 3S functions . 

1.5. Conclusion 
 

We have seen in this chapter the basic notions of crystalline structure and how the 

wavefunction of an electron behaves in crystal with a periodic potential. The most important 

notion that should be taken into consideration is the reciprocal space. We will see in further 

chapters that all the calculations will be done through the first brillouin zone, which is just the 

Wigner-Seitz cell of the reciprocal lattice. The EPM took advantage of the properties of the 

first brillouin zone. 
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Chapter 2: Empirical pseudopotential method 
 

2.1. Introduction 
 

Our band structures are computed using the empirical pseudopotential method with a model 

potential applicable to both the diamond and zincblende structures. As we know, the 

pseudopotential method exploit the fact that the electronic wave function may be separated 

into the sum of a rapidly oscillating part near the atomic cores and a slowly varying piece. The 

pseudopotential approach relies on the assumption that the core electrons are frozen and that 

the valence electrons move in a weak single electron potential making the true atomic wave 

function orthogonal to the core states. 

2.2. Theoretical basis 
 

Studies of electronic structure rely on knowledge of the energies and wavefunctions of single 

electron states throughout the Brillouin zone. To define the problem more clearly, we require 

the electronic structure to be known as a function of position in k-space: 

                                                       𝛦 = 𝐸𝑛(𝑘)                                                (2.1) 

𝜓 = 𝜓𝑛(𝑘) 

Where n is the band index, k is the wave vector, E is the energy, and 𝜓 is the single electron 

wavefunction. 

 There are two general categories of methods to calculate the band structure [4]. The first 

category consists of ab initio methods, such as Hartree-Fock or Density Functional Theory 

(DFT), which calculate the electronic structure from first principles. In general, these methods 

utilize a variational approach to calculate the ground state energy of a many-body system, 

where the system is defined at the atomic level. The original calculations were performed on 

systems containing a few atoms. Today, calculations are performed using approximately 1000 

atoms but are computationally expensive, sometimes requiring massively parallel computers . 

In contrast to ab initio approaches, the second category consists of empirical methods, such as 

the Orthogonalized Plane Wave (OPW)[5], tight-binding (also known as the Linear 

Combination of Atomic Orbitals (LCAO) method), and the local or the non-local empirical 

pseudopotential method (EPM). These methods involve empirical parameters to fit 

experimental data such as the band-to-band transitions at specific high-symmetry points 

derived from optical absorption experiments.  The appeal of these methods is that the 

electronic structure can be calculated by solving a one-electron Schrödinger wave equation. 
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Thus, empirical methods are computationally less expensive than ab initio calculations and 

provide a relatively easy means of generating the electronic band structure [6]. 

In practice, the choice of which method to use is determined by the type of calculation that 

we are going to perform. For instance, it is obviously preferable to use a method which is 

reasonably fast in terms of CPU time if a large number of band structure calculations 

throughout the Brillouin zone are required which is exactly the case that we are dealing with. 

The empirical pseudopotential method perfectly serve our interest in this topic. 

The empirical psodopotential method is a ground state theory with correspondingly empty 

conduction band states as a result; it does not give accurate conduction band energies. On the 

other side, ab initio methods does not give necessarily accurate results, and they are very CPU     

intensive. Fortunately, empirical methods are available that are less computationally expensive 

than ab initio calculations. 

2.3. The empirical pseudopotential method 
 

All band structure methods are required to solve the one-electron Schrodinger equation:                                      

                                                                [
−ℏ2

2𝑚0
𝛻2 + 𝑉(𝑟)]𝜓(𝑟) = 𝐸𝜓(𝑟)                                               (2.2) 

The difficulty in solving this lies in the potential term  𝑉(𝑟) , which is the average potential 

felt by each electron and the ion cores. It has the periodicity of the crystal lattice and the 

property of being strong and atomic-like near the cores and weak between them. Several 

approaches such as Tight-binding method (TBM) and the nearly free electron model (NFEM) 

tend to solve that difficulty. But none of them achieves satisfactory. the TBM which is also 

known as LCAO (linear combination of atomic orbitals ), gives acceptable valence band 

structure but can’t be relied on for excited states, which are of obvious importance in any study 

of the optical properties. Also, the NFEM is an over-simplified model. this model consider the 

valence electron as a perturbed gas of a completely free electrons so that the potential in one 

electron Hamiltonian is considered to be smaller than the kinetic energy term , such that the 

energy can be expanded using perturbation theory. Fortunately, the pseudopotential method 

exists; it views the valence electrons as they are of primary importance in determining the 

properties of the crystal [7]. 
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2.3.1 Element of the pseudopotetials 

 

Electrons in atoms can be divided into two parts , core electrons and valence electrons .for 

example , the electronic configuration of Si is given by : ls22s22p63s23p2 ,the  ls22s2  and 2p6 

considered as the core orbitals, and the 3s23p2 forms the valence orbitals which are responsible 

for the bonding between atoms and can be modeled by the pseudowavefunction . The 

pseudowavefunction differs from the true wavefunction only in the ionic cores region that 

occupy a small fraction of the crystal volume, and obeys a Schrodinger-like equation with only 

a relatively weak potential. This assumption of a weak potential can be understood in terms of 

the fact that the valence electrons experience a nuclear potential that is screened by the core 

electrons and, in addition, the effect of the Phillips-Kleinman cancellation theorem[8]. The 

latter demonstrates that since the wavefunction of the valence electrons must be orthogonal to 

the core states, the pseudowavefunction behaves as if there is a repulsive "orthogonality 

potential". It turns out that the repulsive orthogonality potential and the attractive core 

potential almost cancel [9]. 

2.3.2. Orthogonalized plane waves (OPW) 

 

in this section, a mathematical explanation for the arguments stated above is given . The 

basis states in this approach are constructed from a set of plane waves which have been 

orthogonalised to the atomic core states. Between the cores, the plane wave component is well 

suited to describe the weak potential that exists there. Near the cores, however, the 

orthogonalisation terms force the valence electron wavefunctions to adopt the next highest 

core state wavefunction, effectively acting to repel the valence electrons from the core. Thus 

these orthogonalisation terms act like a kind of repulsive potential, and when it is combined 

with the attractive core potential they almost cancel, leaving behind a net, weak effective 

potential. This is the pseudopotential. This effect is detailed in the Phillips-Kleinmann 

cancellation theorem [8], which explicitly demonstrates how such an orthogonality potential 

can be constructed. The true wavefunction is expressed as the sum of a smooth wavefunction 𝜙 

and a sum over occupied core states 𝜙𝑡: 

                                                     𝜓 = 𝜙 + ∑ 𝑏𝑡𝜙𝑡𝑡                                             (2.3) 

The true wavefunction is forced to be orthogonal the core states: ⟨𝜙𝑡|𝜓⟩ = 0 . 

For all t, then solving for 𝑏𝑡yields: 

                                             𝜓 = 𝜙 − ∑ ⟨𝜙𝑡|𝜙⟩𝜙𝑡𝑡                                  (2.4) 
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Which can be substituted into the Schrodinger equation: 

                     𝐻𝜙 − ∑ ⟨𝜙𝑡|𝜙⟩𝐸𝑡𝑡 𝜙𝑡 = 𝐸𝜙 − 𝐸 ∑ ⟨𝜙𝑡|𝜙⟩𝜙𝑡𝑡                       (2.5) 

This can then be rewritten in such a way as to explicitly identify the repulsive potential 𝑉𝑅 

arising from the orthogonalization terms: 

                                         (𝐻 + 𝑉𝑅)𝜙 = 𝐸𝜙                                            (2.6) 

Where: 

                               𝑉𝑅 = ∑ (𝐸 − 𝐸𝑡)𝜙𝑡⟨𝜙𝑡|𝜙⟩/𝜙𝑡                                    (2.7) 

If we then split up H into its kinetic component and core potential terms, we obtain: 

                     (
−ℏ2

2𝑚0
𝛻2 + 𝑉 + 𝑉𝑅)𝜙 = (

−ℏ2

2𝑚0
𝛻2 + 𝑉𝑝𝑠)𝜙 = 𝐸𝜙                 (2.8) 

Where 𝜙 is a pseudowavefunction related with the true wavefunction by equation (2.3). 

Equation (2.8) is the psudowavefunction 𝜙 equation. However, the energy term E does not 

represent a pseudoenergy. E is the true energy corresponding to the true wavefunction. As we 

can see in equation (2.8), the repulsive potential 𝑉𝑅 and the attractive ionic cores potential V 

added to each other and almost cancel leaving a weak potential noted as pseudopotential.  

 

 

fig 2.1 : Schematic representation of the actual potential  and its correspondent 

pseudopotential. 
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fig 2.2 :Schematic representation of the actual wavefunction 

and corresponding Pseudowavefunction 

 

fig 2.1 is a representation of the true potential and its corresponding pseudopotential. Fig 2.2 

represents the true and the pseudowavefunction. Near the nucleus, the ionic potential diverges, 

but the pseudopotential weakens, as a result the true wavefunction for the ionic potential has 

rapid spatial oscillations near the core, but the pseudowavefunctionis quite smooth. Both the 

potential and pseudopotential, and the wavefunction and pseudowavefunction become 

identical far away from the core. Although the true wavefunction and pseudo-wavefunction 

differ near the ionic cores, the ionic cores only constitute a small fraction of the crystal volume. 

The previous explanations ensure the advantage of the pseudopotential method in term of 

CPU times. If we described the true wave function of the crystal using plane wave, a large 

number of plane waves would be needed to make the calculations more accurate. This is 

because of the strong oscillations of the true wavefunction near the core region. With such a 

large number of plane waves, calculations will be so CPU intensive and would take a long 

time. However, when we use the pseudopotential approach, a much smaller number of plane 

waves would be required to get acceptable results. That what makes the EPM a powerful tool, 

because it provide a good approximation in less CPU times than ab initio approximations. 
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2.3.3. Solution of the pseudo-Hamiltonian 

 

Energies and psudowavefunctions are obtained by solving equation (2.8)[7]. which can be 

written this way: 

                                        (
−ℏ2

2𝑚0
𝛻2 + 𝑉𝑝𝑠)𝜓 = 𝐸𝜓                                     (2.9) 

Where 𝑉𝑝𝑠is the smoothly varying crystal pseudopotential. It has to process the periodicity of 

the lattice , we can write then : 

                                  𝑉𝑝𝑠(𝑟) = 𝑉𝑝𝑠(𝑟 + 𝑇𝑛)                                           (2.10) 

Where 𝑇𝑛 is a vector in the real space. In general, VPS is the smoothly varying crystal 

pseudopotential. In general, VPS is a linear combination of atomic potentials Va, which can be 

expressed as summation over lattice translation vectors R and atomic basis vectors  τ to arrive 

at the following expression: 

                                 𝑉𝑝𝑠(𝑟) = ∑ ∑ 𝑉𝑎(r − R − τ)τ𝑅                                (2.11) 

To simplify further, the inner summation over τ can be expressed as the total potential, V0, in 

the unit cell located at R. equation (2.11) then becomes: 

 

                                       𝑉𝑝𝑠(𝑟) = ∑ 𝑉0(r − R)R                                        (2.12) 

 

We know that 𝑉𝑝𝑠(𝑟) is a periodic function, this means that 𝑉𝑝𝑠can be written in a Fourier 

representation: 

                               𝑉𝑝𝑠(𝑟) = ∑ 𝑉0(𝐺𝑚)𝑚 𝑒𝑖𝐺𝑚.𝑟                                      (2.13) 

𝐺𝑚 is a vector in the reciprocal space. This a local pseudopotential where there is no 

dependence on the angular momentum. 

the expansion coefficient 𝑉0(𝐺𝑚) is given by: 

                                       𝑉0(𝐺) =
1

𝛺
∫ 𝑉0(𝑟)𝑒

−𝑖𝐺.𝑟
𝛺

𝑑𝑟                               (2.14) 

𝛺 is the primitive unit cell volume. 𝑉(𝐺) also referred to us as the pseudopotential form 

factor.To apply this formalism to the zincblende lattice, it is convenient to choose a two-atom 

basis centered at the origin (R = 0).  The atomic basis vector for the zincblende structure are 

given in equation (1.7), 𝑉0(𝑟) can be expressed as:  
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                                𝑉0(𝑟) = 𝑉1(𝑟 − τ) + 𝑉2(𝑟 + τ)                              (2.15) 

Where𝑉1, 𝑉2 are the atomic potential of the cation and the anion. 

Substituting equation (2.15) into equation (2.14) and using the displacement property of 

Fourier transforms, V0(r) can be recast as : 

 

                                    𝑉0(𝐺) = 𝑉1(G)𝑒𝑖Gτ + 𝑉2(G)𝑒−𝑖Gτ                                 (2.16) 

 

Writing the Fourier coefficients of the atomic potentials in terms of symmetric(𝑉𝑠 = 𝑉1 + 𝑉2) 

and antisymmetric(𝑉𝐴 = 𝑉1 − 𝑉2) form factors , 𝑉0(𝐺) can have these form : 

 

                 𝑉0(𝐺) = cos(G. τ)𝑉𝑠(𝐺) + 𝑖 sin(G. τ)𝑉𝐴(𝐺)                            (2.17) 

 

Where the prefactors are the symmetric and antisymmetric structure factors. The form factors 

above are treated as adjustable parameters that can be fit to experimental data. 

For diamond-lattice materials, with two identical atoms per unit cell, the 𝑉𝐴=0 and the 

structure factor is simply cos(G. τ). For zincblende lattice, like the one in GaAs material 

system, 𝑉𝐴0 and the structure factor is more complicated [6]. 

Now, Bloch’s theorem can be employed to rewrite the wave function 𝜓𝑘(𝑟): 

                                           𝜓𝑘(𝑟) = 𝑒𝑖𝑘.𝑟𝑢𝑘(𝑟)                                      (2.18) 

Where 𝑢𝑘(𝑟) has the periodicity of the crystal lattice. It can be expressed using Fourier sum 

employing N plane waves : 

                                           𝑢𝑘(𝑟) = ∑ 𝑎𝑛(𝑘)𝑒𝑖𝐺𝑛.𝑟𝑁
𝑛=1                             (2.19) 

If we put the potential in equation (2.11) and the wavefunction in equation (2.18) into 

schrodinger equation (2.9) , the problem is reduced to a standard matrix eigenvalue problem : 

   (

𝐴(1) 𝑉𝑃𝑠(1,2) ⋯ 𝑉𝑃𝑠(1, 𝑁)
𝑉𝑃𝑠(2,1) 𝐴(2) ⋯ 𝑉𝑃𝑠(2, 𝑁)

⋮ ⋮ ⋱ ⋮
𝑉𝑃𝑠(𝑁, 1) 𝑉𝑃𝑠(𝑁, 2) ⋯ 𝐴(𝑁)

)(

𝑎1

𝑎2

⋮
𝑎𝑛

) = 𝐸 (

𝑎1

𝑎2

⋮
𝑎𝑛

)              (2.20) 

 

where the individual matrix elements are given by : 
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𝐴(𝑖) =
ℏ2

2𝑚0
(𝐾 + 𝐺𝑖)

2 + ⟨𝐾𝑖|𝑉𝑝𝑠(𝑟)|𝐾𝑖⟩ 

                                                   𝑉𝑝𝑠(𝑖, 𝑗) = ⟨𝐾𝑖|𝑉𝑝𝑠(𝑟)|𝐾𝑗⟩                            (2.21) 

𝐾𝑛 = 𝑒𝑖(𝑘+𝐺𝑛).𝑟 

The solution of this precedes using standard matrix diagonalization routines. If N plane 

waves are used in the expansion at a given k, N eigenvalues are obtained corresponding to the 

energies of the bands at that k. Each of these eigenvalues also has an associated eigenvector 

whose coefficients (𝑎1,𝑎2,…,𝑎𝑛) describe the wavefunction of that band at k. Hence 

diagonalization of the matrix results in N eigenvalues and N eigenvectors. It is instructive to 

restate the advantage of the pseudopotential approach in quantitative terms at this point. If the 

real potential was used in Equation (2.20) then the rapid oscillations of the wavefunctions in 

the core would require an expansion involving of the order of 106 plane waves, corresponding 

to a 106 × 106matrix. This makes the problem nearly very hard to solve, since the number of 

calculations required to solve the Hamiltonian is proportional to 𝑁3, where N is the order of 

the matrix. Use of the pseudopotential reduces this problem to a manageable one, with the 

order of 50 plane waves per atom in the unit cell usually being sufficient to obtain a reasonably 

well converged representation [7]. 

 

2.3.4. Choice of the pseudopotential 

 

There are two main choices for the exact form of the pseudopotential, the local and the non-

local pseudopotential. It was shown previously using the Phillips-Kleinmann theorem how the 

pseudopotential can be constructed by knowing only the core states. However, although this 

theorem does serve to underline why the pseudopotential method works, practically, other 

technics are used to obtain pseudo potentials. For most such approaches, a parameterized 

model for the potential is chosen, the final form of which is obtained by fitting to known data 

from experiment. 

Cohen and Bergstresser [10], chose to adopt a simple local form of the pseudopotential where 

the angular momentum is not taken into consideration. This technique was successfully used 

for Germanium and Silicon before being extended to other common semiconductors. 

However, after consideration of the Phillips-Kleinmann formulation of the pseudopotential, it 

is obvious that it must possess some nonlocal character. This is because the pseudopotential is 

constructed from a summation over the core states, and can thus be split up into its constituent 

𝑉𝑆 , 𝑉𝑃 , 𝑉𝑑 etc contributions. It becomes clear that if the core does not contain electrons of a 

certain angular momentum then there will be no repulsive potential for that component. 
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Carbon, for example, has a core which is1s2, and thus the p-valence electrons will feel no 

repulsive potential. It should be noted that in practice, however, the precise form of the local 

potential might be chosen to give correct results for a given symmetry state. Therefore, even if 

there are no p or d core states it does not necessarily mean that there are no p or d components 

[7]. 

We should note that in addition to the local and the non-local pseudopotential, spin orbit 

coupling effects must be included too. Leaving a final form for the matrix elements of the 

pseudopotentialas: 

                            ⟨𝑘𝑖|𝑉𝑝𝑠|𝑘𝑗⟩ = ⟨𝑘𝑖|𝑉𝑙 + 𝑉𝑛𝑙 + 𝑉𝑠𝑜|𝐾𝑗⟩                            (2.22) 

Where 𝑉𝑙 pseudopotential, 𝑉𝑛𝑙is the non-local pseudopotential, 𝑉𝑠𝑜 is the contribution due to 

spin-orbit coupling. All these elements are discussed in the next sections. 

2.3.5. The local pseudopotential 
 

The form of the pseudopotential for one atom per primitive unit cell is: 

                                𝑉𝑙(𝑟) = ∑ 𝑉(𝐺𝑚)𝑚 𝑒𝑖𝐺𝑚.𝑟                                        (2.23) 

The pseudopotential form factor 𝑉(𝐺𝑚) is given by: 

                                  𝑉(𝐺) =
1

𝛺
∫ 𝑉(𝑟)𝑒−𝑖𝐺.𝑟
𝛺

𝑑𝑟                                    (2.24) 

Where 𝛺 is volume of the primitive unit cell. Different number of form factors can be 

employed for different structures. 

2.3.6. The non-local pseudopotential 

 

We stated earlier that the pseudopotential should possess some non-local character, even 

though in actual calculations these contributions are often ignored. Including non-local 

character would make calculations more accurate. The nonlocal pseudopotential is 

incorporated by placing spherical potential wells around each ion, each of which act on a 

different angular momentum component of the wavefunction. The matrix element 

contribution from the nonlocal pseudopotential is written in the form [7]: 

                       ⟨𝐾𝑖|𝑉𝑛𝑙|𝐾𝑗⟩ = ∑ ⟨𝑘𝑖|𝐴𝑙(𝐸)ƒ𝑙(𝑟)𝑃̂𝑙|𝐾𝑗⟩𝑙                               (2.25) 

Where 𝐴𝑙(𝐸)is the well depth, ƒ𝑙(𝑟)describes the shape of the well, and 𝑃̂𝑙 is a projection 

operator such that the 𝑙th well acts only upon the 𝑙th angular component of the wavefunction. 
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The summation is over the angular momentum components 𝑙 present in the core 

wavefunctions. 

The well depth 𝐴𝑙(𝐸)is in general a function of energy. It is usually sufficient to adopt a fixed 

depth 𝐴2 for the d well, but a more complicated form is used for the s well depth. The inclusion 

of a nonlocal component in the pseudopotential introduces a total of up to 5 new parameters 

per atomic type, some of which such as the interatomic separation are fixed. 

 

2.3.7. spin orbit coupling  
 

Spin-orbit coupling is the interaction of the electron spin and its orbital angular momentum 

which causes the degeneracy of some of the electron states in the crystal to be lifted. It is a 

relativistic phenomenon and is therefore more pronounced in the heavier elements [7]. The 

electronic states of nitrogen are known to dominate the electronic structure at the top of the 

valence band, where the effect of spin-orbit coupling is expected to be most noticeable. 

Although nitrogen is a light element, the spin-orbit splitting cannot be ignored without undue 

error. The matrix elements due to the spin-orbit interaction is written as: 

 

⟨𝐾𝑖|𝑉𝑆0|𝐾𝑗⟩ = (𝐾𝑖 × 𝐾𝑗). 𝜎𝑠,𝑠[−𝑖𝜆𝑠. 𝑆𝑠(𝐺𝑖 − 𝐺𝑗) + 𝜆𝐴. 𝑆𝐴(𝐺𝑖 − 𝐺𝑗)]      (2.26) 

 

Where  

                                                  𝐾𝑖 = 𝑘 + 𝐺𝑖                                           (2.27) 

𝐾𝑗 = 𝑘 + 𝐺𝑗  

𝜆𝑠 = (𝜆𝑐 + 𝜆𝑎) 

𝜆𝐴 = (𝜆𝑐 − 𝜆𝑎) 

𝜆𝑐 = 𝜇𝐵𝑛𝑙
𝑐 (𝐾𝑖)𝐵𝑛𝑙

𝑐 (𝐾𝑗) 

𝜆𝑐 = 𝛼𝜇𝐵𝑛𝑙
𝑎 (𝐾𝑖)𝐵𝑛𝑙

𝑎 (𝐾𝑗) 

𝐵𝑛𝑙(𝐾) ∝ ∫ 𝑗𝑛𝑙(𝐾𝑟)𝑅𝑛𝑙(𝑟)𝑟
2𝑑𝑟

∞

𝜊

 

Where 𝑗𝑛𝑙(𝐾𝑟) is the spherical Bessel function of the 𝑙th angular momentum component and 

𝑅𝑛𝑙(𝑟)is the radial part of the core wavefunction. The matrix element contributions due to the 

anion and cation are more simply written as: 

 

                                ⟨𝐾𝑖|𝑉𝑠𝑜
𝛼|𝐾𝑗⟩ = −𝜇𝑖⟨𝑣𝑖|𝜎|𝑣𝑗⟩. (𝐾𝑖 × 𝐾𝑗)                    (2.28) 
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    ⟨𝐾𝑖|𝑉𝑠𝑜
𝛽
|𝐾𝑗⟩ = −𝛼𝜇𝑖⟨𝑣𝑖|𝜎|𝑣𝑗⟩. (𝐾𝑖 × 𝐾𝑗) 

 

Spin-orbit coupling has been incorporated into the pseudopotential scheme by wiez [11], and 

others [12] [13]. As stated above, spin orbit coupling have greater effect in heavier materials. 

Therefore, there is no difference between this approach and the approach adopted by Bloom 

and Bergstresser for the materials considered in this thesis. The parameter 𝜇 is an adjustable 

parameter, altered so as to reproduce the required valence band splitting. The immediate effect 

of including the spin-orbit coupling in the calculations is a doubling in the size of the matrices 

involved. When including spin, the size of the matrices becomes 2N×2N increasing 

computational load. Chelikowsky and Cohen [14] deals with this doubling by treating spin 

orbit interactions as a perturbation. 

2.4. Fitting of the pseudopotentials 
 

Experimental information is incorporated into the pseudopotentials through the symmetric 

and antisymmetric pseudopotential form factors. Band structure information for a particular 

material is obtained from experiment or from more fundamental calculations. This band 

structure data is used to determine a set of 𝑉𝑠(𝐺)and 𝑉𝐴(𝐺) that define the pseudopotential for 

the specific reciprocal lattice vectors of the material in question. The simplest approach is to fit 

the set of 𝑉𝑠(𝐺) and𝑉𝐴(𝐺) directly to the band structure data. Data for form factors established 

in this way are available in the literature (for example [15]). This approach is well established 

and has proved to be a very successful tool in the calculation of electronic structure [16][17], 

but there is no ready way to use the results to obtain the form factors of the material when 

strained, or of alloys made from the material. An alternative approach, which is used 

throughout this topic, is to parameterize the functions 𝑉𝑠(𝑞)and 𝑉𝐴(𝑞)for a range of continuous 

q values, such that the form factors could be obtained for any reciprocal lattice in that range. 

This approach provides more flexibility, as the reciprocal lattice vectors can be varied as the 

lattice constant changes with strain or alloying [9]. The symmetric and antisymmetric 

functional forms of the pseudopotentials can be given by [18][19]: 

                                  𝑉𝑆 =
𝑎1𝑞2+𝑎2

1+exp (𝑎3[𝑎4−𝑞2])
                                               (2.29) 

                                  𝑉𝐴 = (𝑎1𝑞
2 + 𝑎2)exp (𝑎3[𝑎4 − 𝑞2])                      (2.30) 

Where 𝑎𝑖 , i= 1 to 4 , are the parameters to be adjusted in the fitting procedure. q is in units of 

(2π/𝑎𝑧𝑏),where 𝑎𝑧𝑏is the lattice constant of the zincblende form of the relevant material. The 
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respective form factors V(G), at the particular G values required in the band structure 

calculations, can then be simply obtained from these expressions . 

 The empirical pseudopotential parameters are optimized using the non-linear least-squares 

method, which requires that the root-mean-square deviation of the calculated level spacing 

(LS) from the experimental ones defined by: 

                                          𝛿 = [
∑ {𝛥𝐸(𝑖,𝑗)}2𝑚

(𝑖,𝑗)

(𝑚−𝑁)
]

1

2

                                             (2.31) 

Should be minimum [7]. 

 

2.5. Output of the EPM 
 

After obtaining the necessary parameters for the local and the non-local pseudopotential, and 

the spin-orbit interactions, the solution of the matrix constituted of 2N×2N can be done using 

standard matrix diagonalization methods, giving as a result, the energies and the 

pseudowavefunction: 

                                                             𝐸𝑛(𝑘), 𝑛 = 1,⋯ ,2𝑁                                     (2.32) 

                                                              𝐶𝑛(𝑘), 𝑛 = 1,⋯ ,2𝑁                                     (2.33) 

Where n is the band index. The pseudowavefunctions are generally a complex vector 

quantities: 

          𝐶𝑛(𝑘) = [↑ 𝐶𝑛,1(𝐾),⋯ , ↑ 𝐶𝑛,𝑁(𝐾), ↓ 𝐶𝑛,1(𝐾),⋯ , ↓ 𝐶𝑛,𝑁(𝐾)]        (2.34) 

As a result, the pseudowavefunction have the following form: 

      𝜓𝑛(𝑘) = 𝑢𝑛(𝑘)𝑒𝑖𝑘.𝑟 =
1

𝛺
[∑ (↑ 𝑐𝑛,𝑗| ↑⟩+↓ 𝐶𝑛.𝑗| ↓⟩)𝑒𝑖𝐺𝑗.𝑟𝑁

𝑗=1 ]𝑒𝑖𝑘.𝑟     (2.35) 

Where 𝑢𝑛(𝑘) is the Bloch periodic part of 𝜓𝑛(𝑘)and 𝛺 is the unit cell volume. The 

eigenfunctions ∣↑⟩ and ∣↓⟩ denote spin-up and spin-down states respectively. 
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fig 2.3 : example of  a zincblende band structures GaN. 

 

The fig 2.3 shows the deference between a band structures for zincblende structure calculated 

using the first principals code VASP (dashed lines), and when using the empirical pseudo 

potential method (solid lines). 

 

fig 2.4 : band structures for a diamond structure material (Si) 

fig 2.4 shows the band structure of silicon calculated by Cohen an Bergstresser [10], using the 

empirical pseudopotential method. 
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2.6. Conclusion 
 

The EPM was introduced briefly in this chapter. All the necessary elements for our 

calculations of band structures have been highlighted and explained. We are going to use this 

method in order to calculate the band structure for two structures: Diamond and Zincblende in 

the next chapter. It is important to note that the EPM is the most convenient choice for such 

application due to the accurate results that it gives when compared to the time that it take.  
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Chapter 3: Implementation, results, and discussion 
 

3.1. Introduction 
 

The previous two chapters were devoted to the presentation of details around semiconductors 

structures and theoretical models that could help describing features of those semiconductors. Much 

attention was given to the pseudopotential approach since this is the model we will implement 

numerically to present results that show the efficiency of such an approach. For this, we will use 

Fortran language to encode the established algorithm. For the diagonalization issue we will use the   

LAPACK (linear algebra package ) libraries since this will make the encoding more tractable. 

Therefore, it is necessary to review Fortran programming language and highlight its various 

benefits. Then, introduce LAPACK libraries, and how the diagonalistion process become very 

easy when using these libraries. After that, the details of the program are given. As a final part 

of this project, we are going to apply this model to both diamond and zincblende structure and 

discuss the different results. 

 

3.2. Technical details  
 

3.2.1. Fortran programing language  
 

Fortran is a general-purpose programming language; its name is derived from the sentence 

FORmula TRANslation. This language first developed in 1957 at the famous company IBM, 

and then the American standards association released the first version of Fortran in 1966, 

named Fortran 66. The purpose of developing Fortran was to provide a portable standard 

language which can be easily transferred from a computer to another. Since the start of fortran 

development , there have  been many version and releases of fortran, a revised version of 

Fortran 66 was released in  1977 and named Fortran 77 . Then, a better version when 

compared to Fortran 77 was released in 1990; it contains a lot of features beside the Fortran 77 

features. Followed by a 1995, 2003, 2008, 2018 versions. Every new version introduces new 

features and fixes issues of last version. 

Fortran was the first high level programming language and the most preferred language for 

the scientist over time, Due to its availability and simplicity which make it easy to teach and  

learn. 
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Fortran is rarely used in industry today, and there are many competing languages that gives 

many features in a better way than Fortran do (ex: C++, python, matlab …). in term of speed , 

C++ is a bit faster than Fortran ,  and in term of simplicity , python is easier to learn than any 

other languages , but it’s not the best choice for heavy numerical computation, because it is 

very slow when   compared to C++ and Fortran . This leaves us with two choices, either you 

chose the more updated and the faster language that is C++, or chose Fortran. The most 

important feature supplemented by Fortran is maybe the fact that is highly oriented object and 

then is very close to the machine. This can have a great advantage over memory allocation and 

management. Besides most of physics code legacy is written in Fortran and it is much easier to 

accommodate with this than write a new piece of programming. A very true example of this is 

the LAPACK libraries that are a valuable piece of programs written in Fortran and that are 

very useful for encoding. 

 

3.2.2. Diagonalization with LAPACK libraries  

 

Diagonalization is the process of finding the eigenvalues and the eigenstates for a 

dagonalizable matrix. A matrix “A” is diagonalizable when there exist a diagonal matrix and 

an invertible matrix P such that  𝐴 = 𝑃𝐷𝑃−1. When D and P are found for a given A, we say 

that A has been diagonalized . if 𝐴𝑛×𝑛 is diagonalizabe, then A has n linearly independent  

eigenvectors. Also in the equation = 𝑃𝐷𝑃−1 , P is a matrix whose columns are eigenvectors 𝑎𝑖⃗⃗  ⃗, 

and the diagonal entities of  D are eigenvalues λi corresponding column by column to their 

respective eigenvetors. the eigenvalue problem can be written in the following form : 𝐷𝑎𝑖⃗⃗  ⃗ =

𝜆𝑖𝑎𝑖⃗⃗  ⃗. 

 Since matrices are the beating heart of physics, Diagonalization then would be also very 

important, especially in quantum physics. The basic reason of this application is that the time-

independent Schrödinger equation is an eigenvalue problem. For our project, we are going to 

elaborate diagonalization of the secular equation from chapter two using  linear algebra 

package ( LAPACK) for Fortran. so what is LAPACK and what is the advantage  of using it ? 

the LAPACK (Linear Algebra Package) is written in Fortran 90 and provides routines for 

solving systems of simultaneous linear equations, least-squares solutions of linear systems of 

equations, eigenvalue problems, and singular value problems. The associated matrix 

factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are 

related computations such as reordering of the Schur factorizations and estimating condition 
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numbers. Dense and banded matrices are handled, but not general sparse matrices [20] . In all 

areas, similar functionality is provided for real and complex matrices, in both single and 

double precision. LAPACK routines are written so that as much as possible of the 

computation is performed by calls to the Basic Linear Algebra Subprograms (BLAS). 

LAPACK is designed at the outset to exploit the Level 3 BLAS, a set of specifications for 

Fortran subprograms that do various types of matrix multiplication and the solution of 

triangular systems with multiple right-hand sides. 

In Fortran programs, most LAPACK routines can be invoked with the CALL statement, 

such as CALL Routine-name (argument_1, ..., argument_n). The following is an example: 

CALL DGETRF(m, n, A, lda, ipiv, info);  “DGETRF is an example of a LAPACK routine” 

 

3.3. Implementation strategy 
 

3.3.1. Summary  of the formulations 

 

As we have explained in the second chapter the central issue in the theoretical quantal study 

is the resolution of the Schrodinger equation. In fact this will lead to the eigenfunctions and 

eigenvalues that are sufficient to deduce any feature related to our semiconductor structure. As 

we have showed the difficulty reside in the fact that the potential to use in this equation is quite 

ubiquitous and to overcome this obstacle the use of the pseudopotentiel could be very helpful 

and less cumbersome compared to others approaches. 

The final set of equations we terminated with at the end of the development of 

pseudopotential technique were: 

   (

𝐴(1) 𝑉𝑃𝑠(1,2) ⋯ 𝑉𝑃𝑠(1, 𝑁)
𝑉𝑃𝑠(2,1) 𝐴(2) ⋯ 𝑉𝑃𝑠(2, 𝑁)

⋮ ⋮ ⋱ ⋮
𝑉𝑃𝑠(𝑁, 1) 𝑉𝑃𝑠(𝑁, 2) ⋯ 𝐴(𝑁)

)(

𝑎1

𝑎2

⋮
𝑎𝑛

) = 𝐸 (

𝑎1

𝑎2

⋮
𝑎𝑛

)                 (3.1) 

Where : 

 

𝐴(𝑖) =
ℏ2

2𝑚0
(𝐾 + 𝐺𝑖)

2 + ⟨𝐾𝑖|𝑉𝑝𝑠(𝑟)|𝐾𝑖⟩ 

                                𝑉𝑝𝑠(𝑖, 𝑗) = ⟨𝐾𝑖|𝑉𝑝𝑠(𝑟)|𝐾𝑗⟩                                    (3.2) 
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𝐾𝑛 = 𝑒𝑖(𝑘+𝐺𝑛).𝑟 

 

It can be stated straightforwardly that the problem resolves by using any diagonalization 

technique to find the ai and E. However as we have showed before the choice of 

pseudopotential Vps  imposes some constraints. For our study we will just consider the non-

local case with the value of the structural factors given by the experimental measures [21]. The 

contribution of these structural factors is limited to only three factors (as the higher orders 

vanishes to very negligible values)   

3.3.2. Number of the plane waves and the cutoff energy 

 

The summation for the Fourier transform that define the potential as well as the wave 

function is in infinite by definition. To implement this in a program it is mandatory to cut the 

basis at a certain value to make the calculations feasible. The only way to establish the limit is 

to identify the value of the energy at which the calculations seem to converge towards a stable 

value. It is what we call cutoff energy that the user should test for each studied case. The value 

of the cutoff energy determine in turn the number of the plane waves needed in our basis. As 

showed before, the pseudopotential allows the cancellation of the core contribution which is 

highly localized and varying  very rapidly making the number of the waves needed to describe 

the variations enormous. The cancellation of the core contribution renders the solution 

numerically reachable.   

For our program we need an estimation of the maximal index that can be used as a number 

of plane wave. For this we use the following estimation: 

                                                𝑛𝑚𝑎𝑥 =
√𝐸𝑐𝑢𝑡

2√3
𝜋

𝑎
+0.5

+ 1                                  (3.3) 

Where a is the lattice parameter. 

 

3.3.3. Symmetric and antisymmetric contributions to the potentials 

 

Cohen and Bergstresser introduce a “symmetric” and an “antisymmetric” contribution, 

corresponding respectively to a cosine and a sine times the imaginary unit in the structure 

factor. The potential  elements is given by the following equation: 

< 𝑏 𝑖,𝑘 |𝑉 |𝑏 𝑖,𝑘  > =  𝑉𝑠 (𝐺) 𝑐𝑜𝑠(𝐺 ·  𝑑)  +  𝑖𝑉𝑎 (𝐺) 𝑠𝑖𝑛(𝐺 ·  𝑑)            (3.4) 
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Where 

                                                   𝑏 𝑖,𝑘 =  𝑘 + 𝐺𝑖                                          (3.5) 

This illustrate the real and the complex parts of the potential where i is the  imaginary unit 

and the d  is the interatomic distance. 

We intend to test first our programm for diamond-lattice as for silicon (Si), Germanium (Ge) 

and tin (Sn). For those cases the atoms are identical and the antisymmetric contribution to 

potential is zero, and we end up with real value of all the matrix compounds for the systems of 

equation (3.1).  The diagonalization in this case is easily performed using routine like Dysev 

from Lapack. 

For the zincblende  (like GaP, GaAs…) however the cell contains two different type of atoms 

and the  potential are complex number. We faced problems of numerical stability using 

directly diagonalization routines dealing with double precision complex. To avoid this 

problem by exploiting the fact that our complex matrix are still hermitian, we transform them 

to real matrices by using the routine “chetd2”. This will convert the problem to the same 

process as previously. 

3.3.4. Bands structure calculation 
 

For each value of the wave vector k, a set of eigenvalues is deduced by resolving the secular 

equation. The connection between this energies form the bands structure. The values of k are 

introduced as an input for the program and could be selected along any chosen high symmetry 

points. Four our program we output four valence bands and four conduction bands. The bands 

structure is important to determine whether the semiconductor gap is direct ou indirect : if the 

maximum of the last valence band and the minimum of the first conduction band coincide at 

the point Gamma, then the semiconductor is said to posse a direct gap and its gap is indirect 

otherwise.  The Fermi level is the energy separating the last valance band and the first 

conduction band.   

3.3.5. Charge density  

 

The eigenvectors that are the output of the resolution of the secular equation could be used  

to plot the charge distribution. In Fact this will lead to the construction of the wave function 

which the modulus will give the probability density that is directly connected to the charge 

distribution. It can be highly instructive to look to those distributions as it can give valuable 
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information on the nature of the bonds between atoms whether for example it is covalent or 

rather ionic.   

3.3.6. Architecture of the program  
 

In the following we give a very compact representation of the written program: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fig 3.1: Representation of the architecture of the built program 

It is important to notice here that the matrices are allocate dynamically according to the plane 

wave number determined by the input phase. 

Evaluate the number of 

of  plane wave 

 

allocate matrices 

assign values of  the matrices 

elements of  the Hamiltonian 

On the plane wave basis 

 

*use Chetd2 to convert matrix to real 

if  it is complex 

*use Dysev for the diagonalization 

 

output eigenvalue (bands structure) 

and eigenvectors 

input Ecut 

input k point 

input a, Vs , Va 
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3.4. Results and evaluation 
 

After have presenting the most important data about our program we are going to test the 

performance of the established program on some specific examples. For the diamond structure 

we will check the results for Si, Ge and Sn whereas for the zincblende structure we are going to 

illustrate the results for GaP, GaAs, and AlSb. Table 3.1 summarize the value of the most 

important input for the program [21]. The cutoff energy is found to turn around 10 Rydberg for 

all the cases. The k points are chosen along L (k modulus =0.866), Γ (k modulus=1.73), x (k 

modulus=2.82), Γ. All the plots of the band structure are versus the k modulus. 

 

Lattice Constant (A)              V3
S                        V8

S           V11
S                  V3

A                         V4
A                  V8

A 
 

Si           5.43                                    -0.21          0.04          0.08         0                  0              0 

Ge         5.66                                    -0.23          0.01          0.06         0                  0              0 
Sn          6.49                                    -0.2            0               0.04         0                  0              0 

GaP       5.44                                   -0.22          0.03           0.07         0.12          0.07       0.02 
GaAs    5.64                                    -0.23           0.01           0.06         0.07          0.05       0.01 
AlSb      6.13                                   -0.21           0.02           0.06         0.06          0.04       0.02 

 

Table3.1: Values of the data used as input for the studied cases [21] 

3.4.1. Diamond structure 

 

3.4.1.1. Silicon (Si) 

 

The bands structure is illustrated in fig 3.2. The details of the bands could vary slightly 

according to the points chosen for the plot but we can notice that the major features are well 

reproduced by our calculations. For the comparison the reader can refer to the original paper 

of Cohen and Bergstresser [10] or any representation on the web. We can notice also that the 

gap for Silicon is indirect as expected. The value of the energy at the gamma point reproduced 

by our calculation is  3.4 eV in excellent accordance with the experimental value.  The value of 

the gap is 0.9 eV. 
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fig.3.2: Silicon bands structure 

3.4.1.2. Germanium (Ge) 
 

 

fig.3.3: Germanium bands structure 

 

fig.3.3 illustrates the band structure for Germanium. The gap is direct with the value given by 

our calculation of 1.2 eV. 

3.4.1.3. Tin (Sn) 
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fig.3.5: Tin bands structure 

fig 3.5 illustrates the band structure of Sn. The gap is direct with the value of our calculation 

around zero. 

3.4.2. Zincblende structure 

 

3.4.2.1. Gallium phosphide (GaP) 
 

 

fig.3.5: GaP bands structure 

fig.3.5 illustrates the band structure for GaP. The gap is direct with a value of 2.76 eV 
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3.4.2.2. Gallium arsenide (GaAs) 

 

 

fig.3.6: GaAs bands structure 

 

fig.3.6 illustrates the band structure for gaAs. The gap is direct with a value of 2.64eV given 

by our calculations. 

3.4.2. 3. Aluminum antimonide (AlSb) 
 

 

fig.3.7. AlSb Bands structure 
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 fig.3.7  illustrates the band structure for AlSb. The gap is direct with a value reproduced by 

our calculations of 1.89 eV. 

 

                           Type                           Calculated gap (eV)                   experimental gap (eV) 

* 
 

Si                        indirect                           0.9                                           1.11 
 
Ge                       direct                              1.2                                           0.74 

 
Sn                        direct                               0                                             0                       

 
GaP                     direct                              2.76                                         2.32 

 
GaAs                  direct                              2.64                                         1.42 
 

AlSb                    direct                             1.89                                        1.58 
 

 

* measures from https://www.mtixtl.com/bandgap-semiconductor.aspx 

Table 3.2: Comparison of the calculated gap to the measured value [22] 

  

We compare in table 3.2 the calculated gap energies to those reported in the literature. The 

comparison is quite satisfactory especially when bearing mind the simplicity and rapidity of the 

used approach. As the gap is temperature dependent, the comparison holds only for 300 K. 

3.5. Conclusion 
 

In this study, we used empirical pseudopotentials to find the band structures for 6 diamond 

and zincblende crystals. The time-independent Schrödinger equation was expanded in plane 

waves of the reciprocal lattice. The eigenvalues of the resulting Hamiltonian matrix were 

found using  computational methods, and the band structures were plotted. The found results 

for the gap energy compare well with experimental data. 

https://www.mtixtl.com/bandgap-semiconductor.aspx
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Conclusion 
 

Using computer simulation to determine physical features for materials has become a non 

avoidable tool to do physics nowadays. Henceforth multiple  codes ready-to-use are available 

on the market each with its benefits, limitations of use and problems. It is however very 

important to be aware of the details of the “black box” if we want to be critical not only about 

the simulation results but also about the process that has lead to such a result. Consequently it 

is very important to do computational physics to investigate different possibilities at the level of 

modelization and numerical recipes. 

The project of this study was the investigation of the empirical pseudopotential method and 

its contribution in the characterization of some semiconductors. The final goal was to be able 

to write a program that is simple and can give results in less time. 

We have started our investigation by presenting the philosophy of the  pseudopotential 

method which can be summarized in one fact: cancel the contribution of the core making the 

needed basis small enough for a practical calculations.  Expanding this way the Schrodinger 

equation on the plane wave basis using the Fourier transform lead us to the secular equation 

which is the starting point for the numerical treatment. 

The written program uses Fortran for encoding the algorithm and the Lapack libraries for the 

diagonalization routines. Solutions were to be found to avoid numerical instabilities by 

exploiting the hermitian nature of the matrices used in these calculations. 

Once the software is built, we performed calculations on some specific semiconductors  to 

show the efficiency of the established tool. The band structure for six diamond and zincblende 

semiconductors were investigated and presented. The comparison with plots that could be 

found in the literature is quite satisfactory. To quantify more the agreement, we compared the 

calculated gap energy with measured values. Here also the agreement is quite satisfactory. 

The pseudopotential approach is a simple calculation to be implemented numerically. It 

could investigate semiconductors features in less time. The results are less accurate than some 

ab initio methods though the approach is very helpful and still is used in the framework of the 

DFT method to render calculations more tractable. 
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Appendix 
 

Code used for the calculation of the band structure 

  

 

  

!--------------------------------------------------------------- 

    program cohber 

  !--------------------------------------------------------------- 

  ! 

  ! program pour le calcul de la structure de bande 

  ! pour les semiconducteurs diamand et zinc blende 

  ! valeurs experimentaless pour les facteurs de forme selon Cohen 

  ! and Bergstresser, PRB 141, 789 (1966) 

  !     Expansion sur une base d’onde plane et diagonalisation 

  !     Unites: hbar^2/2m = 1 

  !     on utilise lapack dsyev et chetd2 

 

  implicit none 

  integer, parameter :: dp = selected_real_kind(14,200) 

  !integer, parameter :: dp = kind(1.d0) 

  !integer, parameter ::  cd=SELECTED_REAL_KIND(14,200). 

  real(dp), parameter :: pi=3.14159265358979_dp, tpi=2.0_dp*pi 

  ! 

  !    a  = parameter de reseau (a.u.) 

  !    facreurs de forme en Rydberg 

  !         x = symmetrique , a = antisymmetrique t 

  !          

  ! 

  real(dp), parameter ::  a=11.58, vs3=-0.21, vs8=0.02, vs11=0.06, & 

                                  va3=0.06, va4=0.04, va11=0.02 

  !    tau position des atomes (en unites de a) 

  real(dp), parameter ::tau1=0.125, tau2=0.125, tau3=0.125 

  !                                   

  integer :: n, npw, npwx, nk 

  real(dp) :: ecut, kg2, g2, vag, vsg, kg0(3), gij(3), h1(3), h2(3), 

h3(3),& 

              re,com,modu,b 

  real(dp) ,allocatable :: a1(:,:),k(:,:), kg(:,:),e(:),d(:)& 

                        ,eof(:) 

  complex*8, allocatable :: h(:,:) 

  complex*8, allocatable :: ta(:),work(:) 

  integer :: i,j,m, nmax, n1, n2, n3, lwork, info,ii 

    

  ! 

  !     on choisi : G_n=n*2pi/L, \hbar^2/2m*G^2 < Ecut 

  

  open (11,file='kpoint.dat',status='unknown',form='formatted') 

  ! 

  ! write (*,"hello") 

  write (*,"('energy de coupure en Ry: ecut (Ry) > ',$)") 

  read (*,*) ecut 

  if ( ecut <= 0.0_dp) stop '  cutoff erroné ' 
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  ! 

  !     Number and list of k-vectors 

  ! 

  write (*,"('Nombre of k-vectors > ',$)") 

 

read (*,*) nk 

  if ( nk <= 0 ) stop ' parameter d entre erronés ' 

  allocate ( k(3,nk) ) 

  write (*,"('k (en 2pi/a units) > ')") 

  do i=1, nk 

      read (11,*, end=10, err=10)  k(1,i), k(2, i), k(3,i) 

  end do 

  10 continue 

  ! 

  !  base de vecteurs pour le réseau réciproque en 2pi/a units 

  ! 

  h1(1) = 1.0_dp;   h1(2) = 1.0_dp; h1(3) =-1.0_dp 

  h2(1) = 1.0_dp;   h2(2) =-1.0_dp; h2(3) = 1.0_dp 

  h3(1) =-1.0_dp;   h3(2) = 1.0_dp; h3(3) = 1.0_dp 

  ! 

  !     boucle sur k-vectors 

  ! 

    open (7,file='bands.out',status='unknown',form='formatted') 

    

  ! 

  do n=1, nk 

     ! 

     !    on compte les ondes plane tel que  (\hbar^2/2m)(k+G)^2 < 

Ecut 

     !    nmax est une estimation de l'indexe (voir memoire) ainsi on 

génére 

     !    les onde plane comme G(n1,n2,n3) =  n1*h1 + n2*h2 + n3*h3 

     ! 

     nmax = nint ( sqrt (ecut) / (tpi/a * sqrt(3.0_dp) ) + 0.5 ) + 1 

     npw = 0 

     do n1 = -nmax, nmax 

        do n2 = -nmax, nmax 

           do n3 = -nmax, nmax 

              !  k+G en 2pi/a units 

              kg0(:) = k(:,n) + n1*h1(:) + n2*h2(:) + n3*h3(:) 

              kg2 = (tpi/a)**2 * ( kg0(1)**2 + kg0(2)**2 + kg0(3)**2 ) 

              if ( kg2 <= ecut ) npw = npw+1 

           end do 

        end do 

     end do 

     print *, 'Nombre des ondes planes=',npw 

     ! 

     allocate (kg(3,npw), e(npw), h(npw,npw),d(npw),& 

              eof(npw),ta(npw),work(3*npw), a1(npw,npw)) 

     ! 

     !    on génére les ondes planes  (! en 2pi/a units) 

     ! 

     i = 0 

     do n1 = -nmax, nmax 

        do n2 = -nmax, nmax 

           do n3 = -nmax, nmax 

kg0(:) = k(:,n) + n1*h1(:)+n2*h2(:)+n3*h3(:) 
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kg2 = (tpi/a)**2 * ( kg0(1)**2+ kg0(2)**2+ kg0(3)**2 ) 

if ( kg2 <= ecut ) then 

                 i = i + 1 

                 kg(:,i) = kg0(:) 

              end if 

           end do 

        end do 

     end do 

     if ( i /= npw ) stop ' certaines ondes planes sont manquantes' 

     !       cleanup 

     h(:,:) =( 0.0_dp, 0.0_dp) 

     !e(:)= 0.0_dp 

     !eof(:)=0.0_dp 

     !ta(:)=( 0.0_dp, 0.0_dp) 

     !d(:)= 0.0_dp 

     a1(:,:)= 0.0_dp 

     ! 

     !    assigner les éléments de matrice du hamiltonien   

     !       selon la base des ondes planes 

     ! 

     do i=1,npw 

        do j=1,npw 

           gij(:) = kg(:,i) - kg(:,j) 

           g2 = gij(1)**2 + gij(2)**2 + gij(3)**2 

           if ( abs (g2-3.0_dp) < 1.0d-6 ) then 

              vsg = vs3 

              vag = va3 

           else if ( abs (g2-4.0_dp) < 1.0d-6 ) then 

              vsg = 0.0_dp 

              vag = va4 

           else if ( abs (g2-8.0_dp) < 1.0d-6 ) then 

              vsg = vs8 

              vag = 0.0_dp 

           else if ( abs (g2-11.0_dp) < 1.0d-6 ) then 

              vsg = vs11 

              vag = va11 

           else 

              vsg =0.0_dp 

              vag =0.0_dp 

           end if 

           if ( i ==j ) then 

               re=(tpi/a)**2 * (kg(1,i)**2+kg(2,i)**2+kg(3,i)**2)+& 

               vsg*cos(tpi*(gij(1)*tau1+gij(2)*tau2+gij(3)*tau3)) 

               com=vag*sin(tpi*(gij(1)*tau1+gij(2)*tau2+gij(3)*tau3)) 

               !re=dble(re) 

               !com=dble(com) 

               h(i,j)=cmplx(re,com ) 

             ! h(i,j) = ((tpi/a)**2 * 

(kg(1,i)**2+kg(2,i)**2+kg(3,i)**2) +& 

              !          vsg 

              else 

              re=vsg*cos(tpi*(gij(1)*tau1+gij(2)*tau2+gij(3)*tau3))               

              com=vag*sin(tpi*(gij(1)*tau1+gij(2)*tau2+gij(3)*tau3)) 
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              !re=dble(re) 

              !com=dble(com) 

              h(i,j)=cmplx(re,com) 

 

             ! h(i,j) =( vsg * 

cos(tpi*(gij(1)*tau1+gij(2)*tau2+gij(3)*tau3))& 

              !        ,vag * 

sin(tpi*(gij(1)*tau1+gij(2)*tau2+gij(3)*tau3))) 

           end if 

           !print  '(2i4,2f12.6)', i,j, h(i,j) 

          !  0.0_dp 

        end do 

     end do 

     ! 

     ! solution (les coefficients de developpement sont dans h(i,j)    

     ! avec    j=sont fonction de indexe de base, i= fonction de 

l'indexe de la valeur propre) 

     ! 

     lwork = 3*npw 

 

 

      ! conversion de la matrice hermitienne en matrice réelle 

      call chetd2('U',npw,h,npw,d,eof,ta,info) 

     

      do i=1,npw 

 

      if(eof(i)< 1.0d-6)then 

       eof(i)=0.0_dp 

      endif 

       if(d(i)< 1.0d-6)then 

       d (i)=0.0_dp 

      endif 

      b=0.0_dp 

      enddo 

      !read(*,*) 

      do i=1,npw 

        do j=1,npw 

        if ( i==j ) then 

        a1(i,j)=real(h(i,j)) !d(i) 

        print  '(2i4,2f12.6)', i,j, a1(i,j),d(i) 

        else if(i==j-1) then 

        a1(i,j)= real(h(i,j)) !eof(i) 

         

          b= a1(i,j)*1.0_dp   !real(h(i,j)) !eof(i) 

         print  '(2i4,2f12.6)', i,j, a1(i,j),eof(i) 

         else if(i==j+1) then 

         a1(i,j)=b 

        print  '(2i4,2f12.6)', i,j,a1(i,j),b 

       else 

       a1(i,j)=0.0_dp !dble(0.0_dp) 

        ! print  '(2i4,f12.6)', i,j, a1(i,j) 

       endif 

        !print  '(2i4,f12.6)', i,j, a1(i,j) 

      enddo 

     

      enddo 
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       !a1(:,:)= dble(h(:,:)) 

       call dsyev ( 'V', 'U', npw, a1, npw, e, work, lwork, info )       

      

 

 

     if (info /= 0) stop ' diagonalisation de H-matrix a échoué ' 

     ! 

     write (*,'("k=",3f10.4)') k(:,n) 

     write (*,'(4f12.4)') e(1:8)*13.6058 

     !write(*,*)work(1) 

     print  '(i4)',info 

      

     ! 

     !  Ecrire le fichier de sortie et la relation de dispersion e(k)     

     modu=sqrt (k(1,n)*k(1,n)+k(2,n)*k(2,n)+k(3,n)*k(3,n)) 

      

     

      write(7,*) modu, e(1:8)*13.6058       ! Energie en eV 

      

     deallocate ( h, work, e, kg,a1,eof,d,ta) 

     ! 

  end do 

  close(7) 

   

  stop 

 

end program cohber 

 

 


