

People's Democratic Republic of Algeria

Ministery of Higher Education and Scientific Research

Mohamed El Bachir El Ibrahimi University of Bordj Bou Arréridj

Faculty of Mathematics and Informatics

Informatics Department

DISSERTATION

Presented in fulfillment of the requirements of obtaining the degree

Master in Informatics

Specialty: Information and communication technologies

THEME

Loyalty Management system (mobile & web) based

on Microservices architecture

Presented by :

MOHAMED NABIL AGUIDA

ACHREF BECHANE

Publicly defended on: 22/06/2023

In front of the jury composed of:

President : OUSSAMA SENOUCI

Examiner: RAMLA BELALTA

Supervisor: SAFA ATTIA

2022/2023

DEDICATION

“Oh my parents, your favor surrounds every bit of me.

Every grief we met caused you more grief.

Everything we have achieved is a result of your efforts.

Oh father, you were my supporter in hardships.

Oh you, who has Paradise under her feet.

All my words and all my thanks are chained.

Either I gather all the meanings in all the tongues.

I still cannot thank them and I never will.

As always daddy << with the left hand >>.

Dr.Miloud Naija, OH teacher Despite the few hours I spent with you, you left in

me things that always remind me of you. You were the best, and you will remain the

best. May God have mercy on you, sir”

Mohammed Nabil Aguida

II

DEDICATION

First of all, I thank ALLAH the most powerful who helped us and gave us

the patience and courage to work hard and achieve the desired results.

To my beloved parents, who have nurtured and cherished me since the

day I was born, your unconditional love and sacrifices have shaped me

into the person I am today. I am eternally grateful for the countless

sacrifices you have made to ensure my happiness and success. Your

unwavering encouragement has given me the strength to persevere, and I

dedicate this achievement to your boundless love and support.

To my amazing friends, who have generously shared their time, expertise,

and insights, your invaluable contributions have played a pivotal role in

the success of this project. Your unwavering support, creative ideas, and

relentless dedication have not only elevated the quality of our work but

also made the entire journey enjoyable and memorable.

Achref Bechane

III

ACKNOWLEDGEMENTS

First, we thank ALLAH the almighty for giving us the will to

begin and complete this work in good conditions.

We also present our deep and sincere thanks to Mrs. Safa Attia

our overseer on this thesis, for the considerable time she has

granted us, for her motivation, precious orientations and her

relevant criticisms that helped us a lot to complete this thesis.

We also thank Mrs. H ALIMA AGUIDA, MOHAMED AMINE

SEDIIKI for all the time we spent together throughout this work,

and for all her provided support to us.

Finally, I thank everyone who contributed from far or near to the

realization of the presented work.

IV

Abstract

Computers & mobile devices have become an essential aspect of our everyday routines

as they serve as a gateway to various online services. In this work, we design and

implement a novel microservice architecture to manage loyalty services. Our work

helps business owners to provide a smooth and easy way to manage their customers

loyalty. We implement both web & mobile applications based on a microservices

architecture. To achieve this, we opt for UML as the modeling language for application

design. For the BACK-END, we use the spring boot framework (JAVA) deployed on

docker, for the interfaces (FRONT-END), we employe the Flutter framework (mobile)

and Html, CSS, Java script (web).

Keywords: web & mobile apps, online services, microservices architecture, loyalty

management.

V

Résumé

Les ordinateurs et les appareils mobiles sont devenus un aspect essentiel de nos routines

quotidiennes, car ils servent de passerelle vers divers services en ligne. Dans ce travail,

nous concevons et mettons en œuvre une nouvelle architecture de microservices pour

gérer les services de fidélisation. Notre travail aide les propriétaires d'entreprises à

fournir un moyen simple et facile de gérer la fidélité de leurs clients. Nous mettons en

œuvre des applications web et mobiles basées sur une architecture microservices. Pour

ce faire, nous optons UML comme langage de modélisation de l'application. Pour le

BACK-END, nous utilisons le framework spring boot (JAVA) déployé sur docker, pour

les interfaces (FRONT-END), nous employons le framework Flutter (mobile) et Html,

CSS, Java script (web).

Mots-clés : applications web et mobiles, gestion de fidélité, services en ligne,
architecture microservices.

VI

خصـــمل

المحمولة جانبًا أساسيًا من روتيننا اليومي لأنها تعمل كبوابة أصبحت أجهزة الكمبيوتر والأجهزة

الخدمات عبر الإنترنت العمل ، . للعديد من بنية خدمات مصغرة سفي هذا وتنفيذ بتصميم نقوم

يساعد عملنا أصحاب الأعمال على توفير طريقة بسيطة وسهلة لإدارة . جديدة لإدارة خدمات الولاء

للقيام . تطبيقات الويب والجوال بناءً على بنية الخدمات المصغرة نشاءبانقوم و س. ولاء العملاء

نستخدم إطار س ، BACK-ENDبالنسبة لـ . كلغة نمذجة لتصميم التطبيق UMLبذلك ، اخترنا

، (FRONT-END)، للواجهات Dockerعلى ستضافالمSpring boot (JAVA)عمل

 (.الويب) Java scriptو CSSو Htmlو (المحمول) Flutterنستخدم إطار عمل س

 إدارة ولاء العملاء - بنية خدمات مصغرة - الخدمات عبر الإنترنت : الكلمات المفتاحية

VII

CONTENT TABLE

abbreviations list ... X

Figures list.. XI

Tables list .. XII

CHAPTER 01 : Inroduction & problematic

A.Contexts... 1

1.Business context .. 1

 1.1Overview ... 1

 1.2Loyalty program types .. 1

2.Technical context .. 2

 2.1Overview ... 2

 2.2Monolithic architecture ... 2

 2.3Microservices architecture .. 3

B.Problematic ... 4

C.Objectives and Contributions ... 5

D.Work Plan ... 6

E.Conclusion ... 7

CHAPTER 02 : State of Art

A.Part 01 ... 8

1.Introduction ... 8

2.Cloud Computing .. 8

 2.1Definition : .. 8

 2.2Characteristics ... 8

 2.3Cloud architecture .. 10

 2.4 Virtualization .. 11

 2.5Why the cloud ... 13

3.Microservices ... 14

 3.1Definition ... 14

 3.2 architecture components ... 14

 3.3 Communication Inter-microservices ... 15

 3.4 Microservices Deployment .. 15

B.Part 02 ... 17

1.Introduction ... 17

2.Existing Templates .. 17

 2.1Stocard . …………………………………………………………………………17

 2.2Yollty…………………………………………………………………………..18

 2.3Catima .. …………………………………………………………………….…..19

3 Model Description ... 19

4 Conclusion ... 20

CHAPTER 03 : Conception and Methodology

1 Introduction ... 21

2. Conception methodology ... 21

 2.2UML (Unified Modeling Language) ... 21

 2.3Unified Process (UP) .. 21

 2.4Uml strengths .. 21

3Analyse and Conception .. 22

 3.1 Use case diagram ... 22

 3.2Sequence diagram ... 27

 3.3 Class diagram .. 32

4Conclusion .. 35

CHAPTER 04 : Implementation

1.Introduction: ... 36

2. Development environment .. 36

 2.1Hardware .. 36

 2.2Software environment .. 36

3.Cardilla global architecture ... 38

4.Implementation and deployment ... 39

5.Conclusion ... 47

General conclusion …………………………………………………………………48

ABBREVIATIONS LIST

UML Unified Modeling Language

Pos Point of sale

CRM Customer Relationship Management

KPI key performance indicator

NIST National Institute of Standards Technology

SAAS Software as a Service

PAAS Platform as a Service

IAAS Infrastructure as a Service

VMM virtual machine monitor

VMs virtual machines

IT Information Technology

API Application Programing Interface

BFF Backend for frontend

UP Unified Process

B-O Business Owner

QR quick response

Ms Microservice

IAM Identity and access management

DB Data Base

SSPL Server-Side Public License

ERP Enterprise Resource Planning

CIB Corporate and investment Banking

X

FIGURES LIST

Figure Ⅰ.1 : Microservices vs Monolithic architectures [... 04

Figure Ⅱ.1 Cloud computing service models .. 09

Figure Ⅱ.2 : Hypervisor types .. 12

Figure Ⅱ.3 : Stocard app ... 17

Figure Ⅱ.4 : Yolltyapp18

Figure Ⅱ.5: Catimaapp .. .19

Figure Ⅲ.1 : Use case diagram23

Figure Ⅲ.2 : Authentication sequence diagram ... 29

Figure Ⅲ.3 : Business creation squence diagram .. 30

Figure Ⅲ.4 : Subscribe to business sequence diagram ………………………………………………...31

Figure Ⅲ.5 : Create customer Card sequence diagram .. 32

Figure Ⅲ.6 :Cardilla class diagram34

Figure Ⅳ.1 : Cardilla global architecture .. 39

Figure Ⅳ.2 : Landing page .. 40

Figure Ⅳ.3 : Business home page .. 40

Figure Ⅳ.4 : Edit card page ... 41

Figure Ⅳ.5 : Setup Business page .. 42

Figure Ⅳ.6: Pending customer page for mobile .. 43

Figure Ⅳ.7: Pending customer page for web .. 43

Figure Ⅳ.8 : Initiate transaction page .. 44

Figure Ⅳ.9: Home & Card details pages .. 45

Figure Ⅳ.10: Redeem offer page ... 46

XI

file:///C:/Users/test/Desktop/5-30-2023.docx%23_Toc136405474
file:///C:/Users/test/Desktop/5-30-2023.docx%23_Toc136405477
file:///C:/Users/test/Desktop/5-30-2023.docx%23_Toc136405478
file:///C:/Users/test/Desktop/5-30-2023.docx%23_Toc136405479
file:///C:/Users/test/Desktop/5-30-2023.docx%23_Toc136405480
file:///C:/Users/test/Desktop/5-30-2023.docx%23_Toc136405484
file:///C:/Users/test/Desktop/5-30-2023.docx%23_Toc136405485

TABLES LIST

Table Ⅱ.1 : Cloud architecture layers .. 11

Table Ⅲ.1 : Create account textual description ... 24

Table Ⅲ.2 : Authentication textual description ... 24

Table Ⅲ.3 : Manage Business textual description ... 25

Table Ⅲ.4 : Subscribe to business textual description... 25

Table Ⅲ.5 : Reply to subscription textual description .. 26

Table Ⅲ.6 : Initiate transaction textual description .. 26

Table Ⅲ.7 : Redeem offer textual description .. 27

Table Ⅲ.8 : Sequence diagram component... 28

Table Ⅲ.9 : Microservices classes .. 33

Table Ⅳ.1 : Hardware .. 36

XII

CHAPTER Ⅰ
 INTRODUCTION AND PROBLEMATIC

CHAPTER Ⅰ : …………………………….INTRODUCTION & PROBLEMATIC

1

A. Contexts

1. Business context

1.1 Overview

Businesses now frequently use loyalty programs to boost the loyalty of their

customers. who are rewarded with incentives and rewards for their continued patronage

of a business. There are many forms and shapes for loyalty programs, such as point

systems, tiered membership programs, or exclusive discounts. The retail industry, in

particular, has seen a significant growth in the use of these programs, by providing these

benefits, retailers aim to foster long-term relationships between businesses and

customers, leading to increased customer satisfaction and increased revenue for the

business.

Loyalty programs particularly apply to high-volume businesses that thrive on

return customers, furthermore, since selling to an existing customer is cheaper than

acquiring new ones, the possibility of building a loyal following is essential to

providing value. When properly implemented, repeat customers will help recruit new

ones at a fraction of the cost of traditional marketing methods.

In addition to rewarding customers for their repeated patronage, loyalty

programs provide the issuing business with a wealth of consumer information and data

While businesses can evaluate anonymous purchases, the use of these programs offer

additional details on the type of products that may be purchased together, and whether

certain incentives are more effective than others.

These initiatives may foster genuine brand loyalty when they are included into

the customer's regular routine. Customers frequently become engaged in the program,

and more than anything else.

1.2 Loyalty program types

1.2.1 Points-based loyalty program

Points-based programs reward customers for their purchases by awarding them

points. The customers can then redeem these points for rewards or discounts. This type

of loyalty program is designed to encourage customers to make repeat purchases,

making them popular in retail environments, like restaurants. When customers reach a

certain number of points, they can cash those points in to get a product or receive a

discount [1].

1.2.2 Tiered loyalty program

Tiered loyalty program offers different levels of rewards and benefits based on

the frequency and number of purchases made by the customer. The program is divided

into different tiers, with each tier offering progressively better rewards and benefits,

CHAPTER Ⅰ : …………………………….INTRODUCTION & PROBLEMATIC

2

some programs use the names of precious metals -- silver, gold and platinum -- or other

naming conventions to motivate customers to spend more and reach higher tiers for

increased rewards [1].

1.2.3 Subscription based loyalty program

Subscription-based loyalty programs require customers to pay an upfront to

become a member and receive benefits such as discounts, special promotions, and

exclusive access to products or services. The goal of this type of loyalty program is to

provide customers with a personalized experience and incentivize them to continue

their patronage of the business. Subscription-based loyalty programs are often used in

industries such as hospitality, entertainment, and retail [1].

2. Technical context

2.1 Overview

Cloud computing is a model for delivering computing services including

servers, storage, databases, processing units, networking, software, analytics, and

intelligence over the Internet “the cloud” to offer faster innovation, flexible resources,

and economies of scale.

The impact of cloud computing on software development has been significant

and far-reaching. Cloud software development is forever altering the way humans and

technology interact. Businesses and individuals benefit from enhanced accessibility

while reducing complexity. With cloud computing organizations can develop and

deploy applications within a web browser. And your clients have the potential to use

these apps while bypassing an unwelcome download and installation process.

When the software architecture design is the process of defining the structural

elements of a software system and their relationships, as well as the behavior of the

system. Two of the most common software architecture designs stand in a challenge of

which is the suitable architecture for software dev, monolithic and microservices

architecture.

2.2 Monolithic architecture

Monolithic architecture is a traditional software architecture style where all

components of an application are combined into a single, tightly coupled unit. In a

monolithic architecture, the application is built as a single, large executable, with all

components being tightly integrated and dependent on each other, The word “monolith”

is often attributed to something large and glacial, which isn’t far from the truth of a

monolith architecture for software design, some of its advantages mentioning:

• Easy to develop: Monolithic architecture is relatively simple to develop, as all

components of the application are combined into a single unit. This makes it

CHAPTER Ⅰ : …………………………….INTRODUCTION & PROBLEMATIC

3

easier for developers to understand the code, as well as to write, test, and debug

the application.

• Easy to deploy: Because all components of a monolithic application are

combined into a single unit, it is easier to deploy and run the application. There

is no need to manage separate components or worry about dependencies

between different parts of the system.

• Improved performance: Monolithic applications can be optimized for

performance, as all components of the application can be designed to work

together in a harmonious way. This can result in improved speed and efficiency.

• Reduced complexity: Monolithic architecture can help reduce complexity, as

there are fewer components to manage and fewer dependencies to worry about.

This can make it easier to maintain the application and ensure that it continues

to work correctly over time.

However, as monolith architecture has some advantages in a small scale, when

the app grows in complexity and size a monolith architecture may face some

difficulties:

• Scalability: Monolithic architecture can be difficult to scale, as all components

of the application are combined into a single unit. This makes it harder to add

new features or handle increased traffic, as the entire system must be deployed

and tested in its entirety.

• Maintenance: Monolithic architecture can be more difficult to maintain, as

changes to one part of the system can affect other parts. This can lead to

increased maintenance costs and a higher risk of bugs and other issues.

• Deployment: Monolithic architecture can be difficult to deploy, as all

components of the application are combined into a single unit. This can result

in longer deployment times and increased downtime, as the entire system must

be deployed and tested in its entirety.

• Flexibility: Monolithic architecture can be less flexible than other approaches,

as all components of the application are combined into a single unit. This can

make it harder to adapt to changing requirements or add new features and

functionality.

These difficulties or challenges of scalability and resilience effect growing up

with businesses, software architects design a modern architecture which is

microservices architecture to be able to overcome those challenges [2].

2.3 Microservices architecture

Microservice architecture is a software design pattern in which a large monolith

application is broken up into a collection of small, independent loosely coupled services

that communicate with each other over well-defined APIs. Each microservice is

responsible for a specific business capability and runs in its own process, often on its

own server. Here are some of microservices architecture’s strengths:

CHAPTER Ⅰ : …………………………….INTRODUCTION & PROBLEMATIC

4

• Scalability: Individual microservices can be scaled up or down as needed, which

helps to improve the performance of the overall application.

• Flexibility: With microservices, different parts of the application can be built

using different programming languages and technologies.

• Resilience: If one microservice fails, it won't bring down the entire application.

This helps to increase the overall stability and availability of the system.

• Continuous Delivery: Microservices can be developed and deployed

independently, which enables faster delivery of new features and

improvements.

• Improved Deployment: Microservices can be deployed to different

environments and resources, making it easier to test and deploy new features.

However, implementing a microservice architecture can be challenging, as it

requires careful planning and coordination to ensure that services can communicate

with each other effectively and the overall system remains secure and performant [2].

The next figure (Figure I.1) represents the overall architectures (Monolothic vs

Microservices)

Figure I.1.Microservices vs Monolithic architectures [5]

B. Problematic

Managing a loyalty program can be a complex and challenging task, particularly

for businesses with a large customer base. Some of the common issues faced in

managing loyalty programs include:

• Complex Rewards Structures: With many loyalty programs offering a range of

rewards, it can be challenging for businesses to manage the complex structures

and ensure that customers receive the correct rewards in a timely manner.

CHAPTER Ⅰ : …………………………….INTRODUCTION & PROBLEMATIC

5

• Redeeming Rewards: Some customers may find it difficult to redeem rewards,

especially if they are not aware of the redemption process, if the process is

overly complex, or lost, forgotten of the physical cards. This can lead to a lack

of motivation to participate in the program.

• Fraud and Misuse: Loyalty programs can also be vulnerable to fraud and

misuse; such as multiple accounts or cards being used by a single customer or

rewards being redeemed for non-eligible items.

Addition to these issues, implementing traditional loyalty programs systems in Algeria

face more challenges including:

• Lack of Integration: Loyalty programs that are not integrated with other

systems, such as point-of-sale (POS) systems, customer relationship

management (CRM) systems, and marketing automation systems, can result in

a disjointed customer experience. This can lead to data inaccuracies,

inconsistent rewards, and a lack of tracking and analysis capabilities.

• With the rare use of credit/debit cards in Algeria, the use of physical cards is

uncommon to Algerians.

• poor data quality: absence stores management systems or offline solutions led

to lack of data concerning retails, product reviews, successful loyalty programs

patterns

Digitalization can help address these challenges and make loyalty program

management more efficient and effective. Digital tools and systems can automate many

of the manual processes involved in managing a loyalty program, such as tracking

customer purchases and rewards, validating reward redemptions, and communicating

with customers.

Deciding whether to use a monolithic or microservice architecture for a given

tool or system can be a challenging problem.as we saw both approaches have their own

advantages and disadvantages, and the best choice will depend on the specific

requirements and constraints of the project, and the trade-offs between scalability,

complexity, time to market, maintenance and deployment.

How we can implement a resilient and flexible solution providing real-time

analytics and reporting capabilities, enabling businesses to monitor program

performance with the capability of scale up?

C. Objectives and Contributions

Since data has become a powerful tool in the business industry, allowing

business owners to gain valuable insights into customer behavior and preferences, as

well as to optimize operations and improve the overall customer experience, the main

objective of our project is to build a cross-platform (Android, Ios, and Web) application

named <<Cardilla>> to contribute with:

CHAPTER Ⅰ : …………………………….INTRODUCTION & PROBLEMATIC

6

• Business owners: help the business to grow up by providing them with tools

enabling them to:

o Create and manage Loyalty programs, by making the loyalty program

more convenient and accessible through a digital platform, businesses

can improve the overall customer experience.

o A client dashboard for a clean visualization.

o Real time KPI’s enable them tracking the orientation curve their

businesses.

• Customers: offer customers a convenient, personalized, and engaging loyalty

experience

o Storing loyalty card electronically will make customers no longer need

to carry physical loyalty cards or remember multiple loyalty numbers.

o offer immediate rewards for in-store purchases, including points or

discounts. This leads to greater customer satisfaction.

o Real time tracking of the various transactions and rewards, providing a

clear understanding of their loyalty status.

• Our business perspective: our goals that we aspire to achieve from building this

platform are:

o Building a large database gathering small and medium businesses in

Algeria.

o Study and identifies trends, patterns, and relationships between

customers and businesses in Algeria.

o Assisting the advancement of the digital economy and the spread of

technological solutions in Algeria.

With data analysis we can identify new opportunities, respond quickly to market changes,

making our data among the most priceless resources for production businesses and marketers.

D. Work Plan

To cover both business and technical aspects of our project we decided to divide

our thesis to four chapters:

The first chapter <<Introduction & Problematic>> of which we made an

introduction to the loyalty programs, their types and their benefits on the growth of

businesses, in the other hand we have defined a technical context putting two of the

most common software dev architectures “Monolith” and “Microservices”

architectures In a briefed comparison also presented the different problems and

solutions which our platform is based on.

The second chapter <<State of Art>>in the part one, we have dived deeper

defining the cloud computing, its characteristics, its overall architecture and why we

need the cloud. Moving to microservices architecture, its components, the

communication inter-services and finally the deployment. While the part two we have

notating some of the existing models with a similar context.

CHAPTER Ⅰ : …………………………….INTRODUCTION & PROBLEMATIC

7

The third chapter <<Conception & Methodology>> is devoted to the project

framework, methodology, analysis and design, where we described our project, the

UML formalism and the UP approach. We have also listed and established different

UML diagrams related to the design of our application, the use cases, sequences,

activities and class diagrams.

While the app development will be the subject of the fourth and last

chapter<<Implementation>>in which we have defined the used development tools and

illustrated some interfaces of the implemented platform <<Cardilla>>.

Finally, we concluded this work by summarizing the knowledge acquiredduring

the realization of this project as well as some perspective.

E. Conclusion

In the first chapter, we discussed the business context, including an overview of

loyalty program types, and the technical context. We identified the need for a robust

loyalty program solution and outlined the objectives and contributions of this work. In

the next chapter we will deep dive in explaining cloud computing and microservices

architecture

CHAPTER Ⅱ
 STATE OF ART

CHAPTER Ⅱ : ……………………………………………………..STATE OF ART

8

A. Part 01

1. Introduction
Building flexible application that can adapt to changing business needs is the is

the primary goal of the software architects, therefore combining two powerful

technologies “Microservices architecture” and “Cloud Computing” enable architects to

build highly adaptable, resilient, and cost-effective applications that can respond

quickly to changing business requirements, while also improving performance,

reliability, and maintainability.

In this chapter we will explore these two technologies in general highlighting

their basic components.

2. Cloud Computing

2.1 Definition :

Cloud computing is a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction. (The National Institute of

Standards and Technology (NIST)) [3].

2.2 Characteristics

This model includes five essential characteristics, three service models, and

four deployment models:

2.2.1 Essential Characteristics:

• On-demand self-service: users can request and access computing resources,

such as storage or processing power, whenever they need it

• Broad network access: the ability of users to access computing resources from

a variety of devices and locations

• Resource pooling: resources are combined into a shared infrastructure and

dynamically allocated to multiple users, maximizing efficiency and scalability.

• Measured service: resource usage is monitored, measured, and reported back to

users, allowing for accurate and transparent billing based on actual usage, as

well as providing insights into resource optimization and planning [3].

CHAPTER Ⅱ : ……………………………………………………..STATE OF ART

9

2.2.2 Service Models

• Software as a Service (SaaS): model where software applications are hosted by

a third-party provider and made available to users over the internet, eliminating

the need for local installation and maintenance. Users typically pay for SaaS

applications on a subscription basis.

• Platform as a Service (PaaS): model where a third-party provider offers a

platform and tools for application development, testing, and deployment,

eliminating the need for users to build and maintain their own infrastructure.

Users typically pay for PaaS services on a pay-as-you-go basis.

• Infrastructure as a Service (IaaS): model where a third-party provider offers

virtualized computing resources, such as servers, storage, and networking, that

users can access and use as needed, without the need to purchase and maintain

their own physical infrastructure. Users typically pay for IaaS services on a pay-

as-you-go basis.

The next figure (Figure II.1) represents the main layers accessed in each service model.

2.2.3 Deployment Models

• Public cloud: computing resources and services are provided by

third-party providers over the public internet. Public cloud

services are typically offered on a pay-as-you-go basis,

providing users with scalability, flexibility, and cost-

effectiveness.

Figure II.1 Cloud computing service models [21]

CHAPTER Ⅱ : ……………………………………………………..STATE OF ART

10

• Private cloud: computing resources and services are dedicated to

a single organization or user, providing greater control, security,

and customization. Private cloud services can be hosted either

on-premises or by a third-party provider and can offer similar

benefits to public cloud services, with the added advantage of

being isolated and dedicated to a specific organization or user.

• Hybrid cloud: combines the use of both public and private cloud

services, allowing users to take advantage of the benefits of both

models. This approach enables organizations to optimize their

computing resources by using public cloud services for non-sensitive

workloads, while keeping critical data and applications in a secure

private cloud environment.

• Community cloud: A model in which a cloud infrastructure is shared

among a specific group of organizations or individuals with common

interests, such as a particular industry, government agency, or

geographic location. This model offers the benefits of public

cloud services while addressing the concerns around security,

privacy, and compliance of sensitive data by restricting access

only to the authorized members of the community [3].

2.3 Cloud architecture

Cloud architecture is the structure of a cloud computing system, which is

composed of various components that work together to provide computing resources

and services to users. At a high level, cloud architecture can be broken down into four

main layers:

1. Cloud Infrastructure Layer: This layer includes the physical resources that make

up the cloud, such as servers, storage devices, and networking equipment. These

resources are typically housed in data centers and are managed by cloud

providers.

2. Cloud Platform Layer: This layer includes the various software platforms and

tools that are used to manage and orchestrate the cloud infrastructure.

3. Cloud Services Layer: This layer includes the various services that are provided

to users over the cloud, such as computing, storage, networking, and

securityservices. These services can be customized and configured to meet the

specific needs of individual users.

4. Cloud Applications Layer: This layer includes the applications and services

that are built on top of the cloud infrastructure and platform layers. These

applications can be developed and deployed by users, or they can be provided

by third-party vendors.

Each cloud architecture layer consists of key cloud components that work

together to provide a comprehensive and scalable cloud computing environment [4].

CHAPTER Ⅱ : ……………………………………………………..STATE OF ART

11

Layer 1 Layer 2 Layer 3

• Virtualization
• Computing resources
• Storage
• Networking

• Management tools
• Automation tools
• Orchestration tools

• Data storage services
• Content delivery services
• Security services

Table II.1 Cloud architecture layers

After discussing the four layers of cloud computing architecture, it's important

to consider the underlying technology that makes it all possible: virtualization

2.4 Virtualization

Virtualization is the process of creating a virtual version of something, such as

an operating system, a server, a storage device, or a network resource. Virtualization

allows multiple operating systems or applications to run on a single physical machine,

or for multiple physical resources to appear as a single virtual resource [6].

2.4.1 Virtualization types

There are different types of virtualizations, each with its own unique benefits

and use cases. Here are some of the most common types:

• Server virtualization: This involves creating multiple virtual servers on a single

physical server, allowing for more efficient use of resources and better

management of workloads.

• Desktop virtualization: This involves creating virtual desktops that can be

accessed remotely by end users, allowing for greater flexibility and mobility.

• Network virtualization: This involves creating virtual networks that can be used

to connect different physical networks or to partition a single physical network

into multiple virtual networks.

• Storage virtualization: This involves creating a virtual layer between physical

storage devices and the applications that use them, allowing for more efficient

storage management and easier data migration [7].

2.4.2 Hypervisor

A hypervisor, also known as a virtual machine monitor (VMM), is a software

layer that creates and manages virtual machines (VMs) on a physical server. The

hypervisor sits between the physical server's hardware and the virtual machines,

providing a layer of abstraction that allows multiple operating systems to run on the

same physical machine without interfering with one another. There are two main types

of hypervisors (Figure II.2):

CHAPTER Ⅱ : ……………………………………………………..STATE OF ART

12

• Type 1 hypervisors, also known as bare metal hypervisors, run directly on the

physical hardware and are often used in server virtualization.

• Type 2 hypervisors run on top of a host operating system and are typically used

in desktop virtualization.

Hypervisors play a critical role in virtualization and are a key component of

many cloud computing architectures. By enabling the creation and management of

virtual machines, hypervisors allow for more efficient use of computing resources and

greater flexibility in managing workloads [8].

Figure II.2 Hypervisor types [9]

2.4.3 Virtualization impacts on the cloud

Virtualization has a significant impact on cloud computing by enabling the

creation of virtualized environments that can be dynamically provisioned, scaled, and

managed in response to changing workloads and business needs. By abstracting

physical computing resources and creating virtual machines that can run on shared

hardware, virtualization has enabled the creation of multi-tenant cloud computing

environments that offer a range of benefits, including:

• Greater efficiency: With virtualization, multiple virtual machines can run on a

single physical machine, enabling more efficient use of computing resources.

• Improved scalability: Virtualization enables cloud providers to rapidly

provision new virtual machines in response to changing workloads, enabling

greater scalability and flexibility.

• Lower costs: By reducing the need for dedicated hardware and enabling greater

resource utilization, virtualization has helped to lower the costs of cloud

computing.

• Improved reliability: Virtualization makes it easier to manage and maintain

cloud environments, reducing the risk of downtime or service interruptions.

CHAPTER Ⅱ : ……………………………………………………..STATE OF ART

13

Overall, virtualization has been a key enabler of cloud computing and has

played a critical role in making cloud computing more scalable, flexible, and cost-

effective.

While virtualization offers many benefits, it also presents several challenges.

These include increased complexity and Compatibility (Some software may not be

compatible with virtualized environments). Proper planning and management are

critical to addressing these challenges [10].

2.5 Why the cloud

The Cloud is an attractive option for organizations looking to improve their IT

infrastructure and stay competitive in today's fast-paced business landscape due to its

numerous benefits including:

• Scalability: Cloud computing allows organizations to quickly scale their

computing resources up or down as needed, without having to make significant

capital investments in new hardware.

• Cost Savings: Cloud computing can be more cost-effective than traditional on-

premises computing because it eliminates the need for organizations to

purchase, maintain, and upgrade hardware and software.

• Accessibility: Cloud computing enables users to access their applications and

data from anywhere with an internet connection, making it easier to work

remotely or collaborate with others.

• Flexibility: Cloud computing offers a wide range of services and deployment

models, allowing organizations to choose the services and configurations that

best meet their needs.

• Reliability: Cloud providers offer high levels of redundancy and fault tolerance,

which ensures that applications and data remain available even in the event of a

hardware failure or other issue.

• Security: Cloud providers typically invest heavily in security measures to

protect their infrastructure and customer data, which can be more secure than

on-premise solutions.

• Innovation: Cloud computing allows organizations to quickly adopt new

technologies and services, enabling them to stay competitive in a rapidly

evolving marketplace.

In summary, cloud computing offers a wide range of benefits that can help

organizations improve their operational efficiency, reduce costs, and foster innovation

[11].

CHAPTER Ⅱ : ……………………………………………………..STATE OF ART

14

3. Microservices

3.1 Definition
Microservices architecture is a way of designing and developing software

applications as a collection of small, independent, and loosely coupled services, each

running in its own process and communicating with other services over a network. [12]

3.2 Microservices architecture components

Here are some of the key components of a microservices architecture:

1. Microservices: A microservice is a small, independent, and loosely coupled

service that performs a specific function within an application. Each

microservice runs in its own process and communicates with other

microservices through a network. Microservices can be developed, deployed,

and scaled independently, which makes them more flexible and resilient than

monolithic architectures.

2. API Gateway: An API Gateway is a service that acts as a single-entry point for

all client requests to the microservices. It provides a layer of abstraction between

the clients and the microservices, which helps to simplify the client code and

improve the scalability and security of the microservices architecture.

3. Message Broker: A Message Broker is a service that facilitates communication

between microservices. It enables messaging between microservices, which

helps to decouple them and make them more resilient to failures. BFF (Backend

for frontend): a microservice designed to handle requests and aggregating

responses from the different microservices to send it back to the frontend.

4. BFF (Backend for frontend): a microservice designed to handle requests and

aggregating responses from the different microservices to send it back

to the frontend.

5. Service Registry/Discovery helps in locating services based on a database of all

available microservices, their endpoints, and metadata.

6. Load Balancer: A component that distributes incoming requests to the

appropriate service instances based on their availability

7. Configuration Server: A centralized repository for storing configuration

information that is accessible to all microservices.

8. Service Monitoring: A system that tracks the health and performance of the

microservices and generates alerts in case of failures or performance

degradation.

9. Circuit Breaker: A mechanism that helps prevent cascading failures by

interrupting communication between services when one service is not

responding.

10. Service orchestration: A layer that coordinates communication and interactions

between microservices to ensure that they work together correctly [13].

CHAPTER Ⅱ : ……………………………………………………..STATE OF ART

15

3.3 Communication Inter-microservices

Effective communication between microservices is critical for the success of a

microservices-based application, Asynchronous and synchronous communication are

two approaches to exchanging information between microservices.

Synchronous communication: involves a request-response model where the

client makes an API call and waits for the server to respond. In this approach, the client

has to wait until it receives a response from the server before it can proceed with its

task. Synchronous communication can be simpler to implement but can also lead to

scalability issues, as many requests can increase response times.

Asynchronous communication involves a message-passing model where the

client sends a message to the server through message queues for example, and the server

processes the message at its own pace. In this approach, the client does not wait for a

response and can continue with its task. Asynchronous communication can improve

scalability and fault tolerance, as messages can be queued and processed later, and

failures can be handled more gracefully in the meantime async communication can

cause more complexity.

Both async and sync communication have their benefits and drawbacks, and the

choice between them depends on the specific use case and requirements of the

microservices architecture. In general, synchronous communication is better suited for

use cases that require immediate responses, while asynchronous communication is

better suited for use cases that can tolerate delays and require high scalability and fault

tolerance [14].

3.4 Microservices Deployment

Microservices deployment is typically done using containerization technologies

such as Docker or Kubernetes. Each microservice is packaged as a container and

deployed separately, making it easier to manage and scale individual components of the

application [15].

The deployment process for microservices involves several stages we should

highlight, but first we have to define containerization.

Containerization: a technique used in software development and deployment

that allows applications to be packaged with all their dependencies and run consistently

in any environment. Containers are lightweight, standalone executable packages that

contain all the necessary components to run an application, such as the code, libraries,

and configuration files. It provides several advantages in a microservices architecture

[16]:

• Isolation: Each microservice can be packaged into its own container, providing

isolation from other microservices and ensuring that they can run independently

of each other.

CHAPTER Ⅱ : ……………………………………………………..STATE OF ART

16

• Scalability: Containers can be easily scaled up or down to meet the demands of

each microservice, allowing for greater flexibility and efficiency.

• Portability: Containers can be easily moved between environments, such as

from development to testing to production, without any changes to the

underlying application code.

• Fast deployment: Containers can be deployed quickly and easily, allowing for

faster release cycles and quicker time to market.

• Resource optimization: Containers use fewer resources than traditional virtual

machines, allowing for greater resource optimization and cost savings.

• Consistency: Containers ensure that each microservice runs in the same

environment, providing consistent behavior and reducing the risk of errors.

Overall, containerization provides a flexible and efficient way to deploy and

manage microservices in a modern architecture, allowing for faster development cycles

and stages, Noting some deployment stages:

1. Building and packaging each microservice into a container image.

2. Deploying the container images to a container registry or repository.

3. Using an orchestration tool to deploy and manage the microservices in a

containerized environment.

4. Configuring load balancers and service discovery tools to ensure that requests

are routed to the appropriate microservices.

5. Monitoring the performance of the microservices and making adjustments as

needed to optimize the application's overall performance [15].

CHAPTER Ⅱ : ……………………………………………………..STATE OF ART

17

B. Part 02

1. Introduction
After conducting research, we have discovered some applications that offer

different loyalty cards management services. In this section, we will present the

applications we have found, outlining some of their strengths and weaknesses,

similarities, and other relevant details. We will then use this information to optimize

our own platform to the best of our abilities.

During our research, we did not come across any application in Algeria that

offers the same set of services as our proposed application. This presents a unique

opportunity for us to fill a gap in the market and become the go-to platform for

businesses and customers in Algeria looking for reliable and convenient loyalty

management services. By capitalizing on this opportunity, we can establish ourselves

as a leader in the industry and pave the way for future expansion and growth.

2. Existing Templates

2.1 Stocard
Stocard (Figure II.3) is a digital wallet app that allows users to store all their

loyalty cards in one place. It was founded by BjörnGoß and David Handlos in

Germany in 2011.

Figure II.3 stocard app [30]

CHAPTER Ⅱ : ……………………………………………………..STATE OF ART

18

Strengths:

• User-friendly interface

• Ability to scan cards using the phone camera

• Availability of special offers and deals

Weaknesses:

• Limited functionality beyond storing loyalty cards

• Lack of features such as expense tracking

• Issues with the app's card scanning feature, which can be unreliable or difficult

to use.

2.2 Yollty
Yollty (Figure II.4) is a mobile app that allows users to collect loyalty points

and rewards from their favorite businesses, such as cafes, restaurants, and shops. The

app aims to simplify the loyalty program experience for users, making it easy to earn

and redeem rewards across a variety of businesses. It was founded in 2014 by Michael

Judeh and Mario Hassan, who are both based in Switzerland.

Strengths:

• Easy to use interface: Yollty's user-friendly interface makes it simple for users

to collect loyalty points and redeem rewards.

• Variety of businesses: Yollty works with a wide range of businesses, giving

users plenty of options to earn and redeem rewards.

Figure II.4 yolltyapp [31]

CHAPTER Ⅱ : ……………………………………………………..STATE OF ART

19

• Social media integration: Yollty allows users to share their rewards and

experiences on social media platforms, which can help promote the businesses

they visit.

Weaknesses :

• Privacy concerns: Some users may be hesitant to share their personal

information and location data with the app, which could impact their willingness

to use it.

2.3 Catima

Catima Loyalty Card Manager (Figure II.5) is a mobile app that allows users to

manage their loyalty cards and rewards programs from a single platform. Users can add

their loyalty cards to the app, it has almost the same features with yollty app.

3 Model Description

Through our research on similar loyalty card management apps, our goal was to

gather information that would help us create a platform that would not only address the

strengths of existing apps, but also compensate for their weaknesses. This involved

analyzing the features and functionalities of existing apps, as well as evaluating user

feedback and reviews to identify areas where improvements could be made. The

ultimate goal was to create a platform that would provide a new experience in Algeria

Figure II.5 catima app [32]

CHAPTER Ⅱ : ……………………………………………………..STATE OF ART

20

helping with the process of digitalizing alongside, we are aiming to achieve the

following goals:

Business:

• Track business performance KPI.

• Promoting the business with cost-effective marketing.

• Increase customer loyalty.

• Enhanced customer data and insights.

Customer:

• Track expenses and transactions.

• Store all loyalty cards in one single app

• Quick access to offers and coupons.

• Varity of businesses and goods

4 Conclusion

In this chapter, we provided a deeper definition of cloud computing and

microservices, including their essential characteristics and core concepts, in the second

part we reviewed different existing solutions along with their strengths and weaknesses,

at the end we showed that our model provides more flexibility and performance

CHAPTER Ⅲ
 CONCEPTION AND METHODOLOGY

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

21

 1 Introduction

In software development, the use of modeling is a critical practice as it enables

the anticipation, prediction, and analysis of system information. A model is typically

linked to a specific development approach, and for our purposes, we have selected the

UML language in combination with a Unified Process (UP) approach for modeling our

application, we aim to create a clear and structured understanding of our system,

allowing for effective development.

2. Conception methodology
Conception methodology is an essential process in software development that

involves defining, designing, and planning a software system. The methodology helps

to ensure that the system performs its intended function effectively. A well-structured

conception methodology can save time, reduce costs, and improve the overall quality

of the final product. In this context, the UML (Unified Modeling Language) and UP

(Unified Process) are two widely used concepts that play a significant role in the

conception methodology of software development.

2.1 UML (Unified Modeling Language)
a standardized graphical modeling language used in software engineering to

design, document, and communicate software systems. It provides a visual notation for

representing different aspects of a system, including its structure, behavior, and

interactions with other systems. UML includes a set of diagrams, such as class

diagrams, use case diagrams, sequence diagrams, activity diagrams... that are used to

model different aspects of a system [17].

2.2 Unified Process (UP)
Is an iterative and incremental software development methodology that provides

a framework for managing and developing software projects. UP is a flexible and

adaptable methodology that can be customized to meet the specific needs of a project.

It is based on a set of best practices that cover the entire software development lifecycle,

from requirements gathering to deployment and maintenance. The use of UP helps to

ensure that the software development process is well-structured, well-documented, and

focused on delivering high-quality software [18].

2.3 Uml strengths
There are several strength points of UML mentioning:

• UML provides a visual representation of the software system, making it easier

to understand and communicate with stakeholders.

• UML is a standardized language, ensuring that UML diagrams can be easily

understood and shared by developers worldwide.

• UML is flexible and can be adapted to different software development

methodologies and tools.

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

22

• UML diagrams can be reused across different software systems, saving time

and reducing development costs.

 UML diagrams provide clear and concise documentation of the software system.

3 Analyse and Conception

3.1 Use case diagram

A use case diagram is a type of UML diagram that represents the interactions

between actors (users or external systems) and a system under consideration. It is a

high-level view of the system's functionality and is used to capture the requirements of

the system and its intended use [19].

3.1.1 Use Case diagram roles:

The main roles of a use case diagram in software development, presented in

bullet points:

• Provides a visual representation of the system's behavior from the perspective

of the user or actor.

• Helps developers identify and understand the system's functionality and

requirements.

• Serves as a communication tool between stakeholders, including developers,

designers, and end-users.

• Can be used as a basis for testing and validating the software system [19].

3.1.2 Use case diagram elements

The following topics describe model elements in use-case diagrams:

• Use cases

A use case describes a function that a system performs to achieve the user’s

goal. A use case must yield an observable result that is of value to the user of

the system.

• Actors

An actor represents the role of a user that interacts with the system that you are

modeling. The user can be a human user, an organization, a machine, or another

external system.

• Relation

In UML, a relationship is a connection between model elements. A UML

relationship is a type of model element that adds semantics to a model by

defining the structure and behavior between the model elements.

https://www.ibm.com/docs/en/SS8PJ7_9.6.1/com.ibm.xtools.modeler.doc/topics/cuc.html
https://www.ibm.com/docs/en/SS8PJ7_9.6.1/com.ibm.xtools.modeler.doc/topics/cuc.html
https://www.ibm.com/docs/en/SS8PJ7_9.6.1/com.ibm.xtools.modeler.doc/topics/cactor.html
https://www.ibm.com/docs/en/SS8PJ7_9.6.1/com.ibm.xtools.modeler.doc/topics/cactor.html
https://www.ibm.com/docs/en/SS8PJ7_9.6.1/com.ibm.xtools.modeler.doc/topics/crelsme_ucd.html
https://www.ibm.com/docs/en/SS8PJ7_9.6.1/com.ibm.xtools.modeler.doc/topics/crelsme_ucd.html

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

23

3.1.3 Use case diagram textual description:

A use case (UC) highlights the functional relationships between actors and the

system studied.

• Precondition: defines the conditions that must be satisfied so that the UC can

start.

• Postcondition: defines what should happen when the UC is completed

successfully, whether it was a nominal or an alternative scenario.

Figure III.1 use case diagram

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

24

3.1.4 Use case << Create Account >>

This table (Table III.1) illustrates the use case of creating a new account

Identification

Use case name: Create an account.

Goal: Signup.

Actors: Customer, Business Owner.

Sequencing

The user launches the application.

Precondition: None.

Nominal chains:

• The user accesses the account creation area.

• The application requires you to fill out an information form.

• The user enters the account information to create and confirm.

Alternative chains:

• Invalid data entered.

• The account already exists.

Post-conditions:

Updating the database

Table III.1 Create account textual description

3.1.5 Use case << Authenticate >>

This table (Table III.2) illustrates the use case of Authenticate.

Identification

Use case name: Authenticate.

Goal: access app resources.

Actors: Customer, Business Owner.

Sequencing

The user launches the application.

Precondition: Signed Up.

Nominal chains:

• The user accesses the login area.

• The application requires you to fill out an information form.

• The user enters the account information to login.

Alternative chains:

• Invalid data entered.

• Incorrect credentials.

Post-conditions:

Access application resources (get access token)
Table III.2 Authentication textual description

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

25

3.1.6 Use case << Create & Manage Business | Branches | Card-

config | offers>>

This table (Table III.3) illustrates the use case of Create Business | Create

Branch | Create Card config | Create offer.

Identification

Use case name: Create Business | Create Branch | Create Card config | Create offer.

Goal: create a virtual business | Branch | Card config | Create offer.

Actors: Business Owner.

Sequencing

• The business owner launches the application.

• Create a business, branch, card config, offer.

Precondition: Authenticated.

Nominal chains:

• The user accesses the creation area.

• The application requires you to fill out an information form.

• The user enters the required information for the creation.

Alternative chains:

• Invalid data entered.

• Business | branch | card config | offer already exists

Post-conditions:

Update database
Table III.3 Manage Business textual description

3.1.7 Use case << Subscribe to business >>

This table (Table III.4) illustrates the use case of Subscribe to business.

Identification

Use case name: Subscribe to business.

Goal:become a loyal customer to a business.

Actors: Customer.

Sequencing

The user launches the application.

Precondition: Authenticated.

Nominal chains:

• The customer scans the business code.

Alternative chains:

• a blocked customer.

• Customer already loyal customer

Post-conditions:

Update the database

Table III.4 Subscribe to business textual description

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

26

3.1.8 Use case << Reply to subscription >>

This table (Table III.5) illustrates the use case of Reply to subscription.

Identification

Use case name: Reply to subscription.

Goal: reply to the customer requests.

Actors: Business Owner.

Sequencing

• The user launches the application.

• B-O access pending customers interface

Precondition: Authenticated.

Nominal chains:

• The B-O accepts or decline customer request.

Post-conditions:

• Update the database.

• Create client card

Table III.5 Reply to subscription textual description

3.1.9 Use case << initiate transaction >>

This table (Table III.6) illustrates the use case for initiate a transaction.

Identification

Use case name: initiate a transaction.

Goal: initiate a transaction giveaway points or stamp card.

Actors: Business Owner.

Sequencing

• The user launches the application.

Precondition: Authenticated.

Nominal chains:

• The B-O accesses the transaction page.

• B-O scans customer card.

• The application requires you to fill out an information form.

• The B-O enters the required information for the transaction.

Alternative chains:

• Invalid data entered.

Post-conditions:

• Update database

Table III.6 Initiate transaction textual description

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

27

3.1.10 Use case << Redeem offer >>

This table (Table III.7) illustrates the use case for Redeem offer.

Identification

Use case name: Redeem offer.

Goal: redeem business offer

Actors: Customer.

Sequencing

• The user launches the application.

Precondition: Authenticated.

Nominal chains:

• The customer accesses the offer details page.

• The customer redeems the offer.

Alternative chains:

• Insufficient points to redeem the offer.

Post-conditions:

• Update database

Table III.7 Redeem offer textual description

3.2 Sequence diagram

A sequence diagram shows object interactions arranged in time sequence. It

depicts the objects involved in the scenario and the sequence of messages exchanged

between the objects needed to carry out the functionality of the scenario.

A sequence diagram shows, as parallel vertical lines (lifelines), different

processes or objects that live simultaneously, and as horizontal arrows, the messages

exchanged between them, in the order in which they occur. This allows the specification

of simple runtime scenarios in a graphical manner [17].

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

28

This table (Table III.8) shows the main sequence diagram components.

Represents a class or object in UML. The object

symbol demonstrates how an object will behave

in the context of the system. Class attributes

should not be listed in this shape.

Represents the time needed for an object to

complete a task. The longer the task will take,

the longer the activation box becomes.

Shows entities that interact with or are external

to the system.

Represents the passage of time as it extends

downward. This dashed vertical line shows the

sequential events that occur to an object during

the charted process. Lifelines may begin with a

labeled rectangle shape or an actor symbol.

Used to model if/then scenarios, i.e., a

circumstance that will only occur under certain

conditions.

Symbolizes a choice (that is usually mutually

exclusive) between two or more message

sequences. To represent alternatives, use the

labeled rectangle shape with a dashed line inside.

Table III.8 Sequence diagram components

3.2.1 <<Authentication>> sequence diagram

This sequence diagram (Figure III.2) shows the basic flow of a username and

password-based authentication process in our client-server application. It demonstrates

how the user's credentials are verified. When authenticating the user, three cases may

arise:

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

29

Data integrity is false, Data integrity is true, and user's credentials are invalid,

Data integrity is true, and user's credentials are valid. Which explains the use of the

"alt" operator. If the information provided is correct, then the database validates the

credentials, if the user's credentials are validated, the system grants access to the

appropriate interface.

On the other hand, if the user enters incorrect information, the system generates

an error message and redisplays the authentication page from where the "loop" operator

is used.

Figure III.2 Authentication sequence diagram

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

30

3.2.2 <<Create business >> sequence diagram

This sequence diagram (Figure III.3) demonstrates the steps involved in

creating a new business. It shows how the user interface interacts with the server to

store the information entered by the user, and how the application responds to the

success or failure of the request.

The process of the business creation is almost the same as the offer, card-config,

and branches creation.

Figure III.3 Business creation squence diagram

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

31

3.2.3 <<Subscribe to a business >> sequence diagram

This sequence diagram (Figure III.4) demonstrates how a user can subscribe

to a business by scanning the business’s QR code. It shows how the application uses

the camera toscan the QR code and decode its information, send the request and the

different server-side possible responses.

Figure III.4 Subscribe to business sequence diagram

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

32

3.2.4 <<Create Customer Card>> sequence diagram

This sequence diagram (Figure III.5) illustrates the high-level steps involved

in creating a customer card, including the interactions between the customer, the

business owner, the Cardilla app, and the backend system (LCardMs). Depending on

the specifics of the system and implementation, additional steps and interactions may

be involved, such as linking the card config (card design) with the customer card.

Figure III.5 Create customer Card sequence diagram

3.3 Class diagram

After the detailed study of use cases, sequence and components diagrams we

have deduced the overall class diagram of the system. This diagram is considered the

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

33

final phase of the theoretical design of our system and will be taken as the reference

from which the software development and writing the source code will take place.

A class diagram in the Unified Modeling Language is a type of static structure

diagram that describes the structure of a system by showing the system's classes, their

attributes, operations, and the relationships among objects.

The architecture of our app is based on microservices, which means that the

app's services are split into multiple smaller services. This splitting also results in the

classes being divided between these services [17].

The following table (Table III.9) shows each class and which microservice it

belongs to:

Class Microservice

User, Customer, Business_Owner AuthMs

Business, Branch BusinessMs

TransactionGain,TransactionRedeem TransactionMs

ClientCard, CardConfig LCardMs

Offer OfferMs

Table III.9 Microservices classes

This division of classes and microservices helps to keep the app's architecture

modular and scalable. Each microservice can be deployed independently and can

communicate with the other microservices through APIs or message queues, making it

easier to maintain and update the app's functionality. The next diagram (Figure III.6)

represents the Cardilla class diagram.

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

34

Figure III.6 cardilla class diagram

CHAPTER Ⅲ : ……………………………CONCEPTION & METHODOLOGY

35

4. Conclusion
In Chapter three, we provided the design of our solution, we started by explaining the

conception methodology, then we explored different diagrams (use case, sequences, class) that

explain our solution. In the next chapter we will have an overview of the application in terms

of development and walkthrough the interfaces.

CHAPTER Ⅳ
 IMPLEMENTATION

CHAPTER Ⅳ : …………………………………………...…IMPLEMENTATION

36

1.Introduction:
In this chapter, we will provide an outline of the development process of the

<< Cardilla >> application. We will begin by discussing the development environment

we used for building the app, followed by a detailed description of the backend various

backend technologies followed by the app global diagram.

 Finally, we will provide an overview of the different interfaces of our

application, which will allow users to easily navigate through the app and access the

different features and functionalities it offers.

2. Development environment

2.1 Hardware
This table (Table IV.1) represents the different set of hardware we used to

develop our application.

Material Characteristic

PC 1 Lenovo IdeaPad 320

Processor: Intel(R) Core (TM) i7-7500U CPU @ 2.70GHz

Memory: 8.00 GB

Operating system: Windows 10 professional 64 bit

PC 2 Lenovo IdeaPad 320

Processor: Intel(R) Core (TM) i7-7500U CPU @ 2.70GHz

Memory: 20.00 GB

Operating system: Windows 10 professional 64 bit

Mobile simulators Huawei y9 2019, 4/64

Samsung Galaxy a5 2016, 4/64
Table IV.1 hardware

2.2 Software environment

2.2.1 Front-end

*Figma (UI/UX design):

Figma is a collaborative web application for interface design, with additional

offline features enabled by desktop applications for macOS and Windows. The feature

set of Figma focuses on user interface and user experience design, with an emphasis on

real-time collaboration, utilizing a variety of vector graphics editor and prototyping

tools. The Figma mobile app for Android and iOS allows viewing and interacting with

Figma prototypes in real-time on mobile and tablet devices [20].

CHAPTER Ⅳ : …………………………………………...…IMPLEMENTATION

37

*Mobile Dev

Flutter

Flutter is an open-source UI software development kit created by Google. It is

used to develop cross platform applications for Android, iOS, Linux, Mac, Windows,

Google Fuchsia, and the web from a single codebase [21].

 *Web Dev

In Web development we use various programming languages and technologies,

such as HTML, CSS, JavaScript, Bootstrap, jQuery, also we use VScode editor for

coding.

2.2.2 Backend

*Java

Java is a programming language and computing platform first released by Sun

Microsystems in 1995. It has evolved from humble beginnings to power a large share

of today’s digital world, by providing the reliable platform upon which many services

and applications are built. New, innovative products and digital services designed for

the future continue to rely on Java, as well [22].

*Spring boot

Java Spring Boot is an open-source tool that makes it easier to use Java-based

frameworks to create microservices and web apps. For any definition of Spring Boot,

the conversation must start with Java one of the most popular and widely used

development languages and computing platforms for app development [23].

*Keycloak (IAM server)

Keycloak is an Open-Source Identity and Access Management solution for

modern Applications and Services. It allows single sign-on with identity and access

management aimed at modern applications and services [24].

*NoSQL DBs

A NoSQL database provides a mechanism for storage and retrieval of data that is

modeled in means other than the tabular relations used in relational databases [25].

*Mongodb

MongoDB is a scalable and flexible document database with querying and

indexing. Classified as a NoSQL database program, MongoDB uses JSON-like

documents with optional schemas. MongoDB is developed by MongoDB Inc. and

licensed under the Server-Side Public License (SSPL) which is deemed non-free by

several distributions. MongoDB is a member of the MACH Alliance [25].

*Postman

Postman is an API platform for building and using APIs. Postman simplifies each

step of the API lifecycle and streamlines collaboration so you can create better APIs—

faster [26].

CHAPTER Ⅳ : …………………………………………...…IMPLEMENTATION

38

*Docker

Docker is a set of platforms as a service (PaaS) product that uses OS-level

virtualization to deliver software in packages called containers. The service has both

free and premium tires. The software that hosts the containers is called Docker Engine.

It was first started in 2013 and is developed by Docker, Inc [27].

3. Cardilla global architecture
As discussed earlier, our architecture is mainly based on microservices, this latter

use different components to interact with each other as depicted below (Figure IV.1).

Noting that all microservices communicate together, we have just projected one

example of <<subscribing to business>> use case. When a request is made from an

endpoint (mobile or web app) to the system it passes through the following stations:

1. Request from the Endpoint: The Http request originates from the client

application, containing the necessary data and parameters. In our example

the client scans the business Qr code and a request is sent with the

information of both the business and the client.

2. API Gateway (Spring cloud Gateway): The API gateway is the entry

point for incoming requests. It receives the request from the endpoint and

acts as a mediator between the client and the microservices.

3. Authentication and Authorization: The API gateway verifies the

authenticity of the (access token) through Keyckloak (auth server). It

ensures that the client is authorized to access the requested resources.

4. Request Routing: Based on the requested endpoint or URL, the API

gateway routes the request to the appropriate microservice.in our case the

BffMs which aggregate data and ensure the access of different

microservices with just one request.

5. Service Communication: after receiving the request the BffMs sends

opens canals of communication with:

a. BusinessMs: (synchronous communication through

OpenFeign) creates a pending customer in the business database.

b. LCardMs: (synchronous communication through OpenFeign)

creates an inactivated customer card in the LCardMs database with

appropriate data retrived from the BusinessMs and the Http request,

it will be activated whene the business owner accepts the

subsctibtion request.

c. NotificationsMs: (asynchronous communication through

Kafka) notify the business owner with the subscription request.

6. Response generation: After processing the request, the microservice

generates a response containing the requested the result of the operation.

The response is then sent back to the API gateway. And finally to the

original endpoint that initiated the request.

CHAPTER Ⅳ : …………………………………………...…IMPLEMENTATION

39

As we noted above, almost all microservices communicates with each other in

several ways, and, each request has it’s own path in the system.

4. Implementation and deployment

In this section of the thesis, we will showcase the primary characteristics of our

application. This will be accomplished through the depiction of several interfaces that

will provide a visual representation of the key functionalities and user interactions

within the application.

Figure IV.1 Cardilla global architecture Subscribe to business exaùple

CHAPTER Ⅳ : …………………………………………...…IMPLEMENTATION

40

* Landing Page

Figure IV.2 Landing page

* Business Home Page

Figure IV.3 Business Home page

CHAPTER Ⅳ : …………………………………………...…IMPLEMENTATION

41

This page (Figure IV.3) represents the business side’s homepage which features

a modern and clean design, with a prominent header section, and a main content area

that includes metrics and analysis, a sidebar with links to various pages, such as

Customers, Offers and Branches pages, and the loyalty card preview. The web version

has a sidebar for navigation, while the mobile version features a bottom navigation bar

for easy access to the various pages. The mobile version is designed to be responsive

and optimized for small screens, with a focus on delivering the most important

information and features in a user-friendly format.

* Edit Card Page

Figure IV.4 Edit card page

The Edit Card page (Figure IV.4) allows business owners to customize their

loyalty cards by editing the color, logo, card type, and business name appearance. On

the web version, the Edit Card page is displayed as a pop-up window, while on the

mobile version it is a separate page that can be accessed via the Card section in the

bottom navigation bar. Both versions feature a simple and intuitive form with clear

labels. Once the business owners have made their changes, they can save the new

settings and view their updated loyalty card.

CHAPTER Ⅳ : …………………………………………...…IMPLEMENTATION

42

* Set-up business Page

The Set-Up Business Page (Figure IV.5) allows business owners to effortlessly

create and customize their businesses profiles. Whether accessed through the web

version or mobile application, the Set-Up Business Page guides users through a

seamless step-by-step process. The page is designed as a stepper-based interface,

ensuring that every important detail is captured. Business owners can easily fill in

essential information such as business name, branches, locations, admins, and

customize their loyalty cards.

Figure IV.5 Setup business page

CHAPTER Ⅳ : …………………………………………...…IMPLEMENTATION

43

* Pending customers Page

Figure IV.6 Pending customer page for mobile

The Accept/Decline Customer Request feature (Figures IV.6, IV.7) provides

business owners with a straightforward and efficient way to manage customer loyalty

requests. Accessible through both the web and mobile versions. When a customer scans

the business’s Qr-code, a request will be sent to the business owner, they can then

accept or decline each request with just a single click.

Figure IV.7 Pending customer page for web

CHAPTER Ⅳ : …………………………………………...…IMPLEMENTATION

44

* Initiate transaction

Figure IV.8 Initiate transaction page

The Transaction Page (Figure IV.8), it can be accessed from the business’s home

page through the initiate transaction button at the top of the home page or transaction

section in the floating action button options. The page design is user-friendly,

displaying essential details such as the transaction amount (in Dzd or in points) and the

customer information. After selecting the customer by scanning his card, the business

owner can give away a number of points directly or he can automate the points

calculation with a predefined model with the money spent as an input and points as an

output.

CHAPTER Ⅳ : …………………………………………...…IMPLEMENTATION

45

* Home and card details pages

Figure IV.9 Home & Card details pages

The customer-side home page of Cardilla (Figure IV.9) presents a simple and

organized layout. It consists of two main sections: "Loyalty Cards" and "Transactions."

The Loyalty Cards section displays a list of cards associated with the customer's

account, each represented by its logo and business name. Tapping on a card navigates

the user to the card details page which presents points balance, status, offers, and

transaction history. The Transactions section shows a chronological list of recent

transactions, featuring business logos, dates, and summaries. A bottom navigation bar

offers quick access to other screens (Offers, and Settings), ensuring convenient

navigation throughout the app

CHAPTER Ⅳ : …………………………………………...…IMPLEMENTATION

46

* Redeem offer page

Figure IV..10 Redeem Offer page

The offers page (Figure IV.10) showcases a range of offers categorized by

different types of businesses. Customers can easily explore the available offers and tap

on a specific offer to view its details. The offer details page provides essential

information such as the offer description, required points, expiration date, and any

applicable terms and conditions. It also includes a status button indicating whether the

offer has been redeemed or not. If customers have accumulated enough points to meet

the offer's requirements, they can tap the redeem button to claim the offer and enjoy the

associated benefits.

47

5. Conclusion
In this chapter, we provided an overview of the development environment, and we

discussed the implementation and deployment of our solution.

48

GENERAL CONCLUSION

Digitalization has brought forth the widespread use of web applications, and it is

impossible to overlook the convenience they offer in simplifying our lives. Computers

and mobile devices have become an essential tool for users and consumers across

various domains, including services, education, management, and retail. These

applications provide a close and accessible platform for individuals to access services,

learn, organize their tasks, and engage with content.

Our project falls within the realm of digitalization, focusing on the development

and implementation of a web & mobile application centered around virtual loyalty cards

for businesses. The aim is to address the evolving needs of customers in their daily

shopping experiences and provide them with a seamless solution for accessing and

redeeming various offers and rewards. The loyalty app will revolutionize traditional

loyalty programs by offering customers a digital platform to manage their virtual

loyalty cards, track their accumulated points, and easily redeem exclusive offers and

discounts, and give businesses the opportunity to track their customers and business

performance.

To accomplish this, we began by introducing the various strategies involved in

the development. We provided a comprehensive overview of the project framework and

outlined our design methodology, which involved utilizing UML as a modeling

language and employing the Unified Process (UP) as our approach. Next, we conducted

a preliminary study to identify the key stakeholders who would interact with the system

being implemented. We meticulously monitored the specification of functional

requirements by creating a use case diagram and performed an in-depth analysis of

needs using sequence diagrams. This meticulous approach ensured a thorough

understanding of the system's requirements and paved the way for successful

implementation.

Finally, we have provided an overview of the app development tools and

programming languages utilized in the implementation of our application, The careful

consideration of these development tools and languages played a crucial role in

successfully bringing our application to life.

The project has proven to be highly advantageous for us, as it has enriched our

understanding and expertise in both theoretical and practical aspects. Through this

endeavor, we have gained valuable knowledge and insights in the field of mobile and

web development. The project served as a platform for us to explore new concepts

(Microservices architecture, the cloud, containerization....), acquire new skills, and

expand our proficiency in the development techniques.

Looking ahead, we envision the design of a more comprehensive system that

offers a wider range of services and functionalities. Our goal is to continuously learn

and gather feedback to further enhance the application. The architecture of the app,

based on microservices, enables the flexibility and scalability necessary to

49

accommodate the addition of new features seamlessly. This modular approach allows

us to independently develop and deploy new services without disrupting the overall

system, and give the next students promotions the opportunity to handle a project that

is ready for expansion in:

• Data mining: by extracting valuable insights from the vast amount of customer

data collected. With data mining techniques, businesses can analyze patterns,

trends, and customer behavior to make informed decisions and optimize system.

• ERP (Enterprise Resource Planning): The expansion of the system to cover ERP

for small businesses will bring enhanced efficiency and streamlined processes

to their operations. By integrating ERP functionalities, small businesses can

optimize their resource planning, inventory management, and financial

processes, leading to improved productivity and overall business performance.

• Cashless payments: Enabling cashless payments (EDahabia, CIB, prepayed

balance) within the system will offer businesses and customers a convenient and

secure way to conduct transactions. By incorporating cashless payment options,

businesses can streamline the checkout process

• E-commerce: Expanding the system to include eCommerce capabilities will

empower businesses to reach a wider customer base and tap into the growing

online market.

50

REFERENCES

[1] R. Chouffani, "techtarget," 19 augest 2022. [Online]. Available:

https://www.techtarget.com/searchcustomerexperience/tip/4-types-of-loyalty-

programs-and-their-benefits. [Accessed march 2023].

[2] C. Harris, "Développement logiciel," [Online]. Available:

https://www.atlassian.com/fr/microservices/microservices-

architecture/microservices-vs-monolith. [Accessed march 2023].

[3] P. M. a. T. Grance, "The Nist Definition of Cloud Computing," Gaithersburg,

September 2011.

[4] S. Aurangabad, 30 March 2023. [Online]. Available:

https://www.geeksforgeeks.org/layered-architecture-of-cloud/. [Accessed april

2023].

[5] L. S. Jonathan Johnson, "BMC," 8 march 2021. [Online]. Available:

https://www.bmc.com/blogs/microservices-architecture/. [Accessed mai 2023].

[6] "Vmware," [Online]. Available:

https://www.vmware.com/solutions/virtualization.html#:~:text=Virtualization%20rel

ies%20on%20software%20to,of%20scale%20and%20greater%20efficiency. [Accessed

april 2023].

[7] K. B. a. B. Kirsch, "TechTarget," [Online]. Available:

https://www.techtarget.com/searchitoperations/definition/virtualization. [Accessed

april 2023].

[8] "Oracle VM Concepts guide for release 3.3," ORACLE, [Online]. Available:

https://docs.oracle.com/cd/E50245_01/E50249/html/vmcon-hypervisor.html.

[Accessed april 2023].

[9] J. MACPHERSON, "Park Place," fzbruary 2022. [Online]. Available:

https://www.parkplacetechnologies.com/blog/what-is-hypervisor-types-benefits/.

[Accessed mai 2023].

[10] Sosinsky.B, "Virtualisation and cloud computing," Auerbach, 2011.

[11] S. Force. [Online]. Available: https://www.salesforce.com/products/platform/best-

practices/benefits-of-cloud-computing/. [Accessed mai 2023].

[12] A. S, "Tech target," Augest 2021. [Online]. Available:

https://www.techtarget.com/searchapparchitecture/definition/microservices.

[Accessed mai 2023].

51

[13] OptiSol, "8 Core Components of Microservice Architecture," [Online]. Available:

https://www.optisolbusiness.com/insight/8-core-components-of-microservice-

architecture. [Accessed April 2023].

[14] M. team, "microsoft," 13 april 2022. [Online]. Available:

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-

microservice-container-applications/communication-in-microservice-architecture.

[Accessed mai 2023].

[15] T. F. D. Ackerson, "semaphore," september 2022. [Online]. Available:

https://semaphoreci.com/blog/deploy-microservices. [Accessed mai 2023].

[16] RedHat, "What is containerization," 8 april 2021. [Online]. Available:

https://www.redhat.com/en/topics/cloud-native-apps/what-is-containerization.

[17] OMG, "OMG Unified Modeling Language Specification," 2007. [Online]. Available:

www.omg.org.

[18] J. O. a. U. Donins, "Science Direct," 2017. [Online]. Available:

https://www.sciencedirect.com/topics/computer-science/unified-process.

[19] M. Fowler, UML Distilled A brief guide to the Standard Object Modeling Language.

[20] C. Hope, "Computer Hope," october 2022. [Online]. Available:

https://www.computerhope.com/jargon/f/figma.htm. [Accessed march 2023].

[21] f. team. [Online]. Available: https://docs.flutter.dev/. [Accessed mai 2023].

[22] IBM, "IBM," [Online]. Available: https://www.ibm.com/topics/java. [Accessed mai

2023].

[23] "spring," [Online]. Available: https://spring.io/projects/spring-boot. [Accessed mai

2023].

[24] B. Żyliński, "DZone," october 2021. [Online]. Available:

https://dzone.com/articles/what-is-keycloak-and-when-it-may-help-you. [Accessed

mai 2023].

[25] M. team. [Online]. Available: https://www.mongodb.com/fr-fr/nosql-explained.

[Accessed mai 2023].

[26] "Corefy Developer Docs," [Online]. Available:

https://corefy.com/docs/integration/postman-collections/. [Accessed mai 2023].

[27] "docker docs," [Online]. Available: https://docs.docker.com/get-started/overview/.

[Accessed mai 2023].

[28] P. M. a. T. Grance, "The NIST Definition of cloud computing," Gaithersburg,

september 2011.

52

[29] T. Foley, "2nd watch," augest 2021. [Online]. Available:

https://www.2ndwatch.com/blog/back-to-the-basics-the-3-cloud-computing-service-

delivery-models/. [Accessed March 2023].

[30] Stocard, [Online]. Available:

https://play.google.com/store/apps/details?id=de.stocard.stocard&hl=fr&gl=US.

[Accessed march 2023].

[31] Yollty S.A., [Online]. Available:

https://play.google.com/store/apps/details?id=com.yollty.yollty&hl=fr&gl=US.

[Accessed mai 2023].

[32] Sylvia van Os, [Online]. Available:

https://play.google.com/store/apps/details?id=me.hackerchick.catima&hl=fr&gl=US.

[Accessed mai 2023].

[33] "Spring," [Online]. Available: https://spring.io/projects/spring-boot.

