Dépôt Institutionnel de l'Université BBA

Fusion d'image multimodales par la transformée en Ondelettes

Afficher la notice abrégée

dc.contributor.author Benahcene Samia
dc.date.accessioned 2023-10-03T08:10:55Z
dc.date.available 2023-10-03T08:10:55Z
dc.date.issued 2023-09-18
dc.identifier.uri https://dspace.univ-bba.dz:443/xmlui/handle/123456789/4013
dc.description.abstract Multimodal image fusion through wavelet transform represents an advanced image processing method. Its aim is to combine data from various imaging sources such as optical, infrared, radar, etc., with the aim of generating a richer, more comprehensive and informative composite image that is more powerful than conventional images. original. The main objective of this dissertation is to participate in the state of the art relating to the fusion of multimodal medical images in particular by using fusion algorithms based on the double tree complex wavelet transform (DTCWT) and the transform discrete wavelet (DWT). After having exposed the advantages of the DWT and DTCWT transform we carried out several tests on multimodal images (medical and multifocus) using several fusion rules. The results obtained showed the effectiveness of the fusion algorithms used in terms of visual quality and in terms of quantitative measurements en_US
dc.language.iso fr en_US
dc.publisher faculté des sciences et de la technologie* univ bba en_US
dc.relation.ispartofseries ;EM/M/2023/19
dc.subject Fusion, multimodal images, Wavelet transformation, DWT , DTCWT en_US
dc.title Fusion d'image multimodales par la transformée en Ondelettes en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte