Dépôt Institutionnel de l'Université BBA

Lane Line Detection Using a Deep Learning Model

Afficher la notice abrégée

dc.contributor.author Hadj Said Yahia, Chihani Rostom
dc.date.accessioned 2024-11-05T14:43:46Z
dc.date.available 2024-11-05T14:43:46Z
dc.date.issued 2024-09
dc.identifier.uri https://dspace.univ-bba.dz:443/xmlui/handle/123456789/5679
dc.description.abstract Deep Learning, within the field of Artificial Intelligence, has emerged as a prominent field renowned for its capacity to discern complex patterns and features directly from raw data. Our project is centered on exploring techniques for detecting lane lines in self-driving cars, leveraging deep learning methodologies, specifically through the application of FCN (Fully Convolutional Network). We aim to conduct a comparative analysis between deep learning approaches and traditional computer vision methods utilizing OpenCV, shedding light on the strengths and limitations of each approach in the context of lane line detection for autonomous vehicles. en_US
dc.language.iso fr en_US
dc.publisher faculté des sciences et de la technologie* univ bba en_US
dc.relation.ispartofseries Département d'Electronique;EL/M/2024/41
dc.title Lane Line Detection Using a Deep Learning Model en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte