Institutional Depot of BBA University

Nouvelle heuristique pour la protection des données sensibles lors de la fouille de motifs fréquents

Show simple item record

dc.contributor.author Chekkal, Mohammed
dc.date.accessioned 2024-09-18T12:16:51Z
dc.date.available 2024-09-18T12:16:51Z
dc.date.issued 2024
dc.identifier.issn MM/820
dc.identifier.uri https://dspace.univ-bba.dz:443/xmlui/handle/123456789/5403
dc.description.abstract Data mining is a data analysis technique that uncovers hidden information and relationships between data. It is used to extract useful information from large amounts of unstructured data. Our study particularly focused on solving the PPDM (Privacy preserving data mining) problem in the context of mining frequent itemsets from transactional databases. The goal is to make a minimal change to the database in order not to disclose sensitive information during the process of mining frequent itemsets. In this work we are interested in the study, the implementation and the comparison of two heuristic approaches for solving the PPDM problem: the "Aggregated" approach which removes certain transactions and the new method that we propose bsd on the well-known combinatorial optimization problem of the set cover problem (SCP). The experimental study was carried out two databases: “Mushroom” and “D1”. en_US
dc.language.iso fr en_US
dc.publisher UNIVERSITY BBA en_US
dc.subject Fouille de motifs fréquents, Bases de données transactionnelles, Fouille de données préservant la vie privée, Approche heuristique en_US
dc.subject Mining frequent patterns, Transactional databases, Privacy preserving data mining, Heuristic approach en_US
dc.title Nouvelle heuristique pour la protection des données sensibles lors de la fouille de motifs fréquents en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account