Dépôt Institutionnel de l'Université BBA

La Reconnaissance du Langage Offensant dans le Contenu Arabe en Ligne

Afficher la notice abrégée

dc.contributor.author Boussouf, Silia
dc.date.accessioned 2024-10-23T09:23:54Z
dc.date.available 2024-10-23T09:23:54Z
dc.date.issued 2024
dc.identifier.issn MM/840
dc.identifier.uri https://dspace.univ-bba.dz:443/xmlui/handle/123456789/5660
dc.description.abstract In this study, we addressed the issue of detecting offensive language on social media in Arabic, a language often underrepresented in natural language processing (NLP) research. By leveraging a recently published public dataset, we trained several machine learning and deep learning models to accomplish this task. The machine learning models used include Naive Bayes, SVM, Decision Tree, and Random Forest. In parallel, we explored deep learning architectures such as convolutional neural networks (CNN) and recurrent neural networks (RNN). Our experiments yielded remarkable results, demonstrating the effectiveness of these approaches in detecting offensive language in Arabic. To enhance user experience and facilitate the application of our work, we also developed a comprehensive user interface in Python. This interface allows for intuitive use of our detection models, making the technology accessible to a non-technical audience. The results obtained are promising and pave the way for future improvements, particularly through the optimization of current models and the exploration of new machine learning and deep learning techniques. en_US
dc.language.iso fr en_US
dc.publisher UNIVERSITY BBA en_US
dc.subject Offensive language detection, offensive content, social media, hate speech, natural language processing, machine learning, deep learning, text classification en_US
dc.subject Détection du langage offensif, contenus offensifs, réseaux sociaux, discours haineux, traitement automatique du langage, apprentissage automatique, apprentissage profond, classification de texte. en_US
dc.title La Reconnaissance du Langage Offensant dans le Contenu Arabe en Ligne en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte