Afficher la notice abrégée
dc.contributor.author |
Chouitah, Marwa |
|
dc.contributor.author |
Benslimane, Benslimane Aya |
|
dc.date.accessioned |
2024-10-23T14:31:04Z |
|
dc.date.available |
2024-10-23T14:31:04Z |
|
dc.date.issued |
2024 |
|
dc.identifier.issn |
MM/842 |
|
dc.identifier.uri |
https://dspace.univ-bba.dz:443/xmlui/handle/123456789/5665 |
|
dc.description.abstract |
The Quran is considered the primary source of Islamic law, but many find it difficult to memorize and recite it accurately. Deep learning models have emerged as an effective means to facilitate this process. In this work, we introduced a novel deep learning approach using a CNN model to identify the numbers of verses and sourah from audio recordings of Quranic recitation, thus facilitating memorization. We trained and tested the model using the "quran
reciters" database, which proved effective with an accuracy rate of 95% on the test data. |
en_US |
dc.language.iso |
fr |
en_US |
dc.publisher |
UNIVERSITY BBA |
en_US |
dc.subject |
L'apprentissage en profondeur, CNN, Quran, Verset, Spectogramme, Convolution, Réseau de neurones, MFCC |
en_US |
dc.subject |
Deep Learning, CNN, Quran, Verset, Spectogramme, Convolution, Réseau de neurones, MFCC. |
en_US |
dc.title |
VALIDATION D’UNE RÉCITATION CORANIQUE EN UTILISANT UN CNN |
en_US |
dc.type |
Thesis |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée