Afficher la notice abrégée
dc.contributor.author |
Merrouche, Said |
|
dc.contributor.author |
Ben Merrouche, Imad el hak |
|
dc.date.accessioned |
2024-10-31T11:14:31Z |
|
dc.date.available |
2024-10-31T11:14:31Z |
|
dc.date.issued |
2024 |
|
dc.identifier.issn |
MM/845 |
|
dc.identifier.uri |
https://dspace.univ-bba.dz:443/xmlui/handle/123456789/5669 |
|
dc.description.abstract |
Recognition of human emotions, particularly through facial expressions, has recently
garnered a lot of research attention. Advanced deep learning and machine learning
techniques have been employed to analyze the CK+ database in order to better understand
and identify emotions.
In our experiments, we explored two primary methods for emotion detection. The
first method involved machine learning techniques using algorithms such as k-nearest
neighbors (K-NN) and support vector machines (SVM). The second method relied
on deep learning using convolutional neural networks (CNN) and (DenseNet). This
comparison allowed us to evaluate the effectiveness of traditional approaches versus
modern techniques in the field of emotion recognition, providing us with deep insights
into the relative performance of each |
en_US |
dc.language.iso |
fr |
en_US |
dc.publisher |
Université de Bordj Bou Arreridj Faculty of Mathematics and Computer Science |
en_US |
dc.subject |
biométrie, réseau de neurones con-volutifs (CNN), reconnaissance des emotions faciales (REF), Machines à vecteurs de support (SVM), K-plus proche voisin (KNN), réseau convolutionnel densément connecté (DenseNet |
en_US |
dc.subject |
biometrics ,convolutional neural network (CNN), facial emotion recognition (FER), support vector machine(SVM), k-nearest neighbors(KNN), densely connected convolutional neural networks(DenseNet) |
en_US |
dc.title |
L’apprentissage profond pour la reconnaissance des macro-expressions |
en_US |
dc.type |
Thesis |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée