Browsing by Author "Habbeche Dounia"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Deep Learning Algorithms for Remote Sensing(university of bordj bou arreridj, 2024) Bouketir Hadda; Habbeche DouniaDeep learning has revolutionized the analysis of data collected from unmanned aerial vehicle (UAV) imagery, allowing for more profound insights, precise analysis, and enhanced data extraction. This advancement has significantly contributed to the refinement of semantic segmentation techniques. Particularly convolutional neural networks (CNNs) have emerged as powerful tools in this domain, outperforming traditional methodologies. Nonetheless, challenges persist, including feature extraction, class imbalance issues, overfitting, and vanishing gradients that hinder deep neural network training, consequently impacting segmentation performance. To address these challenges, we propose a novel approach by integrating the U-Net architecture with ResNet34 backbone leveraging its strong feature extraction capabilities. These features are further improved by using trained weights from the ImageNet dataset. We train and evaluate the proposed model on several UAV datasets, including Aerial Semantic Segmentation, LandCover.ai, UAVid, and AeroScapes. We achieve remarkable performance, higher accuracy, precision, recall, F1-score, and miou compared to other methods.