Dépôt Institutionnel de l'Université BBA

Approximate solution of partial integro-differential equation using pseudo-spectral method

Afficher la notice abrégée

dc.contributor.author Bendjedi, Akram
dc.date.accessioned 2023-03-01T12:12:49Z
dc.date.available 2023-03-01T12:12:49Z
dc.date.issued 2022
dc.identifier.issn MTM/348
dc.identifier.uri https://dspace.univ-bba.dz:443/xmlui/handle/123456789/3520
dc.description.abstract The subject of this dissertation is to apply a pseudo-spectral method based on Chebyshev cardinal functions to solve parabolic partial integro-differential equations (PIDEs). Since these equations play an essential role in mathematics, physics, and engineering. Finding an approximate solution of the equation is important. The numerical technique is based on the combination between the approximation of the solution by the Chebyshev cardinal functions and using Gauss quadrature to approximate the integral appeared in the equation. The problem is reduced to a nonlinear system of algebraic equations. The convergence analysis is investigated and some numerical examples are given to guaranted the efficiency of the proposed algorithm. en_US
dc.language.iso en en_US
dc.subject Méthode spectrale, équations intégro-différentielles partielles, fonction cardinale de Chebyshev, quadrature de Gauss, solution approximative. en_US
dc.subject طرق طيفية، المعادلات التفاضلية التكاملية الجزئية، الوظائف الأساسية لتشيبيشيف ، تربيع غوسيان، حل تقريبي. en_US
dc.subject Spectral method, partial integro-differential equations, Chebyshev cardinal functions, Gauss quadrature, approximate solution en_US
dc.title Approximate solution of partial integro-differential equation using pseudo-spectral method en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte