Dépôt Institutionnel de l'Université BBA

Détection de stress en utilisant l’apprentissage profond dans les réseaux sociaux

Afficher la notice abrégée

dc.contributor.author Loucif Imene, mene
dc.date.accessioned 2024-09-17T10:54:55Z
dc.date.available 2024-09-17T10:54:55Z
dc.date.issued 2024
dc.identifier.issn MM/813
dc.identifier.uri https://dspace.univ-bba.dz:443/xmlui/handle/123456789/5378
dc.description.abstract Emotion analysis and emotional computing have attracted much interest in various research fields in recent decades, particularly with the emergence of problems concerning users' psychological health such as stress, anxiety and depression. To analyze these social media impacts, textual analyzes are particularly effective in identifying characteristics of human behavior and describing emotional state. In this project, advanced deep learning techniques to analyze social media data are used, in order to understand the emotional signals that present the stress indices expressed in texts. To detect stress in social networks, we analyzed textual data from Twitter and Reddit platforms. Using the LSTM model makes it possible to capture temporal and contextual dependencies in texts, and to accurately identify stressful emotions. Additionally, the LSTM model performance is compared with that of classical methods. en_US
dc.language.iso fr en_US
dc.publisher UNIVERSITY BBA en_US
dc.subject Social networks analysis, Stress detection, Deep learning, LSTM en_US
dc.subject لمات المفتاحية: تحليل الشبكات الاجتماعية، اكتشاف التوتر، التعلم العميق، en_US
dc.title Détection de stress en utilisant l’apprentissage profond dans les réseaux sociaux en_US
dc.title.alternative Détection de stress en utilisant l’apprentissage profond dans les réseaux sociaux en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte