Dépôt Institutionnel de l'Université BBA

Analyse Comparative des Algorithmes de Haute utilité pour représentation concise dans les bases de données transactionnelles

Afficher la notice abrégée

dc.contributor.author HARRAR, IBTISSEM
dc.date.accessioned 2024-09-17T11:10:31Z
dc.date.available 2024-09-17T11:10:31Z
dc.date.issued 2024
dc.identifier.issn MM/814
dc.identifier.uri https://dspace.univ-bba.dz:443/xmlui/handle/123456789/5379
dc.description.abstract High utility item set extraction (HUIM) is an important problem in data mining, consisting of combinations of items that significantly impact a specific metric such as sales or profits. Faced with the exponential growth of data in the world of Big Data, it becomes imperative to design efficient algorithms to extract these sets of high-utility articles quickly and efficiently. In this comparative study, we examined the performance of HUIM algorithms for concise representation. Several large datasets were used to conduct experiments to evaluate the performance of MinFHM, CHUI-MinerMax, EFIM_Closed and CHUD concerning execution time, memory consumption, and number of high utility items mined. According to the results, these algorithms were proven to be able to efficiently extract high utility item sets, with remarkable performance in terms of speed and optimal memory usage. en_US
dc.language.iso fr en_US
dc.publisher UNIVERSITY BBA en_US
dc.subject Big Data, ensembles d'éléments à haute utilité, représentation concise en_US
dc.subject Big Data , high-utility itemsets Mining , concise representation en_US
dc.title Analyse Comparative des Algorithmes de Haute utilité pour représentation concise dans les bases de données transactionnelles en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte