Dépôt Institutionnel de l'Université BBA

VALIDATION D’UNE RÉCITATION CORANIQUE EN UTILISANT UN CNN

Afficher la notice abrégée

dc.contributor.author Chouitah, Marwa
dc.contributor.author Benslimane, Benslimane Aya
dc.date.accessioned 2024-10-23T14:31:04Z
dc.date.available 2024-10-23T14:31:04Z
dc.date.issued 2024
dc.identifier.issn MM/842
dc.identifier.uri https://dspace.univ-bba.dz:443/xmlui/handle/123456789/5665
dc.description.abstract The Quran is considered the primary source of Islamic law, but many find it difficult to memorize and recite it accurately. Deep learning models have emerged as an effective means to facilitate this process. In this work, we introduced a novel deep learning approach using a CNN model to identify the numbers of verses and sourah from audio recordings of Quranic recitation, thus facilitating memorization. We trained and tested the model using the "quran reciters" database, which proved effective with an accuracy rate of 95% on the test data. en_US
dc.language.iso fr en_US
dc.publisher UNIVERSITY BBA en_US
dc.subject L'apprentissage en profondeur, CNN, Quran, Verset, Spectogramme, Convolution, Réseau de neurones, MFCC en_US
dc.subject Deep Learning, CNN, Quran, Verset, Spectogramme, Convolution, Réseau de neurones, MFCC. en_US
dc.title VALIDATION D’UNE RÉCITATION CORANIQUE EN UTILISANT UN CNN en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte