Dépôt Institutionnel de l'Université BBA

Reconnaissance d’Oreilles Basée sur l’Apprentissage Profond : Améliorer la Précision et la Performance dans des Scénarios Réels

Afficher la notice abrégée

dc.contributor.author RAHMANI, Sara
dc.date.accessioned 2024-10-24T11:08:03Z
dc.date.available 2024-10-24T11:08:03Z
dc.date.issued 2024
dc.identifier.issn MM/844
dc.identifier.uri https://dspace.univ-bba.dz:443/xmlui/handle/123456789/5667
dc.description.abstract Automatic recognition of individuals from ear images is a rapidly growing research field, competitive with other biometrics such as facial recognition and fingerprints. The ear offers unique and stable characteristics over time, which can be captured with a traditional camera. Our research explores ear recognition using various feature extraction models and classification methods. The first architecture employs SVM and KNN algorithms with LLBP and ALBP descriptors, achieving accuracies ranging from 85% to 98.50%. The second architecture uses convolutional neural networks (CNN) on processed images, achieving a remarkable accuracy of 100%. en_US
dc.language.iso fr en_US
dc.publisher UNIVERSITY BBA en_US
dc.subject biometrics, ear recognition, facial recognition, convolutional neural networks, feature extraction, classification methods, correct recognition rate. en_US
dc.title Reconnaissance d’Oreilles Basée sur l’Apprentissage Profond : Améliorer la Précision et la Performance dans des Scénarios Réels en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte