Dépôt Institutionnel de l'Université BBA

Approche Multifacette pour la Maladie du Foie : Prédiction, Méta-Classification et Simulation de la Migration entre Stades

Afficher la notice abrégée

dc.contributor.author Nouioua, Imene
dc.contributor.author Nouioua Ratiba, Ratiba
dc.date.accessioned 2024-11-06T11:34:02Z
dc.date.available 2024-11-06T11:34:02Z
dc.date.issued 2024
dc.identifier.issn MM/850
dc.identifier.issn MM/850
dc.identifier.uri https://dspace.univ-bba.dz:443/xmlui/handle/123456789/5681
dc.description.abstract hronic diseases, especially those affecting the liver, pose a major challenge to global heal thcare systems. In this dissertation, we have explored various aspects from prediction to simula ting the migration between stages of these chronic conditions. Utilizing advanced data analysis and machine learning techniques, our study focuses on four key aspects : improving predic tion, feature selection, model optimization, and meta-classification, along with simulating the migration between disease stages for preventive purposes. At each stage, rigorous experiments were conducted to validate our methodology. The results confirm the crucial importance of prediction in anticipating disease progression, as well as the effectiveness of feature selection and model optimization in enhancing prediction performance. Meta-classification, by combi ning predictions from different models, enhances result reliability. Furthermore, simulating the migration between stages provides a better understanding of disease progression dynamics en_US
dc.language.iso fr en_US
dc.publisher Université de Bordj Bou Arreridj Faculty of Mathematics and Computer Science en_US
dc.title Approche Multifacette pour la Maladie du Foie : Prédiction, Méta-Classification et Simulation de la Migration entre Stades en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte