Dépôt Institutionnel de l'Université BBA

L’Apprentissage Automatique Pour La Prédiction De Lien Dans Les Réseaux Complexes

Afficher la notice abrégée

dc.contributor.author BOUABDALLAH, Maroua
dc.contributor.author DRIAI, Ibtissem
dc.date.accessioned 2024-11-07T09:19:28Z
dc.date.available 2024-11-07T09:19:28Z
dc.date.issued 2024
dc.identifier.issn MM/852
dc.identifier.uri https://dspace.univ-bba.dz:443/xmlui/handle/123456789/5685
dc.description.abstract This work explores graph theory concepts to model and analyze complex networks with an emphasis on the use of machine learning. Methods examined include similarity measures based on common neighbors, measures based on the length of paths, We also evaluated the effectiveness of different classification algorithms, such as Support Vector Machine (SVM), K Nearest Neighbors (KNN)…Our results show that certain combinations of these methods and algorithms make it possible to obtain accurate predictions of link classes in complex networks, thus opening new perspectives for their analysis and application in various fiel en_US
dc.language.iso fr en_US
dc.publisher Université de Bordj Bou Arreridj Faculty of Mathematics and Computer Science en_US
dc.subject : link prediction, Classification algorithms, Complex networks ت en_US
dc.subject : prédiction de lien, Algorithmes de classification, Réseaux complexes en_US
dc.title L’Apprentissage Automatique Pour La Prédiction De Lien Dans Les Réseaux Complexes en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte