Impact des techniques de prétraitement sur la performance des modèles de classification du diabète.

dc.contributor.authorDif marwa Mahmoud
dc.contributor.authorZineb Ghezlane
dc.date.accessioned2025-11-11T07:48:30Z
dc.date.issued2025
dc.description.abstractDiabetes is a chronic disease for which early diagnosis is crucial to prevent serious com plications. In this work, we study the impact of preprocessing techniques on the performance of classification models applied to diabetes data. To this end, we use two medical datasets : the Pima Indians dataset and a local dataset from Iraq. We evaluate three classification algo rithms : logistic regression, support vector machines (SVM), and decision trees. We apply two normalization techniques (MinMaxScaler and StandardScaler) and three feature selection me thods (SelectKBest, GenericUnivariateSelect, SelectFromModel). The results, evaluated using cross-validation, show that a well-chosen preprocessing strategy significantly improves model accuracy, with varying performance depending on the nature of the data and the algorithm used.
dc.identifier.issnMM/903
dc.identifier.urihttps://dspace.univ-bba.dz/handle/123456789/1004
dc.language.isofr
dc.publisheruniversity of bordj bou arreridj
dc.subjectDiabetes
dc.subjectClassification
dc.subjectPreprocessing
dc.subjectFeature Selection
dc.subjectNormalization
dc.subjectCross Validation.
dc.titleImpact des techniques de prétraitement sur la performance des modèles de classification du diabète.
dc.typeThesis

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
mémoire_PDF.pdf
Size:
1.83 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: