Revue Syst´ematique de la Litt´erature sur les M´ethodes d’Apprentissage Automatique pour l’Analyse des Big Data avec une ´ Etude de Cas

dc.contributor.authorSAADI, Imane
dc.contributor.author- BORDJI, Zahra
dc.date.accessioned2024-10-23T09:36:45Z
dc.date.available2024-10-23T09:36:45Z
dc.date.issued2024
dc.description.abstractWith the explosion of data volume generated daily, Big Data has become a major concern across various domains. The significance of Big Data lies in its ability to provide valuable insights and facilitate informed decision-making. However, to fully harness this potential, it is essential to employ machine learning techniques that can process, analyze, and extract relevant information from these vast datasets. This thesis presents a systematic literature review on machine learning methods for Big Data processing and analysis, accompanied by a case study. The study covers various supervised, unsupervised, semi-supervised, and deep learning techniques, along with their algorithms, including SVM, regression, decision trees, convolutional neural networks (CNN), recurrent neural networks (RNN), and clustering techniques such as HDDC, SOM, FCM, and k-means. A rigorous methodology was employed to identify and evaluate relevant studies. In the case study, the k-means algorithm was applied to the Iris dataset, demonstrating its effectiveness in identifying patterns within the data. In conclusion, this systematic review has highlighted different machine learning techniques for addressing Big Data challenges and their limitations. Through this study, current issues have been identified, paving the way for exploring avenues for improvement and resolution of these issues in the future.en_US
dc.identifier.issnMM/841
dc.identifier.urihttp://10.10.1.6:4000/handle/123456789/5661
dc.language.isofren_US
dc.publisherUNIVERSITY BBAen_US
dc.subjectBig Data, Machine Learning, Systematic Review, K-means, SVM, CNN, RNN, Clustering.en_US
dc.subjectBig Data, Apprentissage Automatique, Revue Syst´ematique, K-means, SVM, CNN, RNN, Clustering. iien_US
dc.titleRevue Syst´ematique de la Litt´erature sur les M´ethodes d’Apprentissage Automatique pour l’Analyse des Big Data avec une ´ Etude de Casen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Zahra_Imene_Memoire_Master-.pdf
Size:
2.13 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: