Classification des Signaux EEG basée sur l’Apprentissage automatique et l'apprentissage profond

dc.contributor.authorTemhachet Rayane
dc.contributor.authorLaichaoui Yasmina
dc.date.accessioned2025-11-13T08:02:26Z
dc.date.issued2025
dc.description.abstractApproximately 50 million people worldwide suffer from epilepsy, a chronic neurological disorder. The automatic detection of epileptic seizures from EEG (electroencephalogram) signals remains a major challenge for researchers. This study proposes a methodology for classifying EEG signals using machine learning techniques, including Support Vector Machines (SVM), k-Nearest Neighbors (KNN), the Naive Bayes (NB) algorithm, and a Convolutional Neural Network (CNN). To evaluate model performance, metrics such as Accuracy (AC), Sensitivity (SE), Specificity (SP), and Receiver Operating Characteristic (ROC) curves were used. The results demonstrate the effectiveness of the applied models, particularly the CNN, in the automated detection of epilepsy from EEG signals.
dc.identifier.issnMM/930
dc.identifier.urihttps://dspace.univ-bba.dz/handle/123456789/1028
dc.language.isofr
dc.publisheruniversity of bordj bou arreridj
dc.subjectEEG
dc.subjectClassification
dc.subjectEpilepsy
dc.subjectMachine Learning
dc.subjectSVM
dc.subjectKNN
dc.subjectNB
dc.subjectCNN
dc.titleClassification des Signaux EEG basée sur l’Apprentissage automatique et l'apprentissage profond
dc.typeThesis

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Mémoire finale1.pdf
Size:
3.69 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: