Une nouvelle méthode de racinisation hybride et statistique pour la langue arabe

dc.contributor.authorBOUBAAYA Hocine
dc.date.accessioned2025-11-05T08:05:28Z
dc.date.issued2025
dc.description.abstractThis research focuses on the process of stemming in Arabic texts, a fundamental step in Arabic Natural Language Processing (NLP). It aims to propose a novel hybrid stemming method that combines statistical techniques, semantic resources, and machine learning models to enhance the accuracy of root extraction. The work includes a critical review of existing Arabic stemming approaches, a comparative evaluation of statistical methods, and the development of a flexible statistical model based on morphological rules. The proposed method is tested on a corpus of Arabic texts, and the results demonstrate its superiority in terms of precision and linguistic coverage compared to traditional stemmers.
dc.identifier.urihttps://dspace.univ-bba.dz/handle/123456789/956
dc.language.isofr
dc.publisheruniversity of bordj bou arreridj
dc.subjectNatural Language Processing
dc.subjectStatistical Methods
dc.subjectStemming
dc.subjectMorphology
dc.subjectRoot Extraction
dc.subjectArabic Language
dc.subjectArabic Corpora
dc.subjectLexical Resources.
dc.titleUne nouvelle méthode de racinisation hybride et statistique pour la langue arabe
dc.typeThesis

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
rapport BOUBAAYA HOCINE.pdf
Size:
1 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: