Algorithme Hybride de Débruitage Image/Vidéo à base de Réseaux de Neurones Convolutionnels (CNN).

dc.contributor.authorTERAI Salim.
dc.date.accessioned2021-11-03T12:29:26Z
dc.date.available2021-11-03T12:29:26Z
dc.date.issued2021-09-14
dc.description.abstractNowadays, Machine Learning has proven itself as a contender for modern researches on the technical domain. We propose in this manuscript to exploit a certain field from machine learning, which is the deep learning. With the Deep Learning we’ll do a study about image and Video denoising through deep neural network especially CNN (Convolutional Neural Network) according to several recent algorithms namely: DVDnet, FastDVDnet, FFDnet, DnCNN. We shall compare them with classical Image/Video denoising algorithms: BM3D, VBM4D, VNLB, SPTWO. By this comparative study, we will use an evaluation criterion by calculating PSNR, SSIM, MSE, and RMSE in addition to running time and visual quality of the obtained denoised images/videos.en_US
dc.identifier.urihttp://10.10.1.6:4000/handle/123456789/1062
dc.language.isofren_US
dc.publisherFaculté des Sciences et Technologiesen_US
dc.relation.ispartofseries;EL/M/2021/19
dc.subjectDeep Learning, Denoising, Deep neural network, CNN, PSNR, SSIMen_US
dc.titleAlgorithme Hybride de Débruitage Image/Vidéo à base de Réseaux de Neurones Convolutionnels (CNN).en_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Finalisation mémoire Salim.pdf
Size:
5.8 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: