VALIDATION D’UNE RÉCITATION CORANIQUE EN UTILISANT UN CNN

dc.contributor.authorChouitah, Marwa
dc.contributor.authorBenslimane, Benslimane Aya
dc.date.accessioned2024-10-23T14:31:04Z
dc.date.available2024-10-23T14:31:04Z
dc.date.issued2024
dc.description.abstractThe Quran is considered the primary source of Islamic law, but many find it difficult to memorize and recite it accurately. Deep learning models have emerged as an effective means to facilitate this process. In this work, we introduced a novel deep learning approach using a CNN model to identify the numbers of verses and sourah from audio recordings of Quranic recitation, thus facilitating memorization. We trained and tested the model using the "quran reciters" database, which proved effective with an accuracy rate of 95% on the test data.en_US
dc.identifier.issnMM/842
dc.identifier.urihttp://10.10.1.6:4000/handle/123456789/5665
dc.language.isofren_US
dc.publisherUNIVERSITY BBAen_US
dc.subjectL'apprentissage en profondeur, CNN, Quran, Verset, Spectogramme, Convolution, Réseau de neurones, MFCCen_US
dc.subjectDeep Learning, CNN, Quran, Verset, Spectogramme, Convolution, Réseau de neurones, MFCC.en_US
dc.titleVALIDATION D’UNE RÉCITATION CORANIQUE EN UTILISANT UN CNNen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
VALIDATION D’UNE RÉCITATION CORANIQUE.pdf
Size:
2.78 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: