Résumé:
In thisdissertation,wedealwiththeproblemofsimulatingstochasticdifferentialequations
driven byBrownianmotionorthegeneralL´evy processes.First,weestablishthebasic
theory ofstochasticcalculusandintroducetheIt ˆo-Taylorexpansionforstochasticdifferen-
tial equations(SDEs).Inaddition,wepresentvariousnumericalschemesderivedfrom
the It ˆo-Taylorexpansion.ThesemethodsareusedtosolvethestochasticLorenzequa-
tion, thestochasticDuffingequation,andtheMertonmodelequation.Inaddition,spec-
tral techniquesareadaptedforthenumericalsolutionofnonlinearstochasticdifferential
equations. Further,generalizedLagrangeinterpolationfunctionsareproposedforsolving
various typesofSDEs,offeringsignificantperformanceimprovements.