Afficher la notice abrégée
dc.contributor.author |
Boukhelkhal, Ikram |
|
dc.date.accessioned |
2024-06-23T09:51:58Z |
|
dc.date.available |
2024-06-23T09:51:58Z |
|
dc.date.issued |
2024-06-13 |
|
dc.identifier.issn |
MD/23 |
|
dc.identifier.uri |
https://dspace.univ-bba.dz:443/xmlui/handle/123456789/5035 |
|
dc.description.abstract |
In thisdissertation,wedealwiththeproblemofsimulatingstochasticdifferentialequations
driven byBrownianmotionorthegeneralL´evy processes.First,weestablishthebasic
theory ofstochasticcalculusandintroducetheIt ˆo-Taylorexpansionforstochasticdifferen-
tial equations(SDEs).Inaddition,wepresentvariousnumericalschemesderivedfrom
the It ˆo-Taylorexpansion.ThesemethodsareusedtosolvethestochasticLorenzequa-
tion, thestochasticDuffingequation,andtheMertonmodelequation.Inaddition,spec-
tral techniquesareadaptedforthenumericalsolutionofnonlinearstochasticdifferential
equations. Further,generalizedLagrangeinterpolationfunctionsareproposedforsolving
various typesofSDEs,offeringsignificantperformanceimprovements. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
UNIVERSITY BBA |
en_US |
dc.subject |
Stochastic differentialequation,Brownianmotion,jumpdiffusion,spectral method, numericalsolution,collocationmethod. i |
en_US |
dc.title |
Numerical treatment of stochastic differential equations: Diffusion and jump-diffusion processes with applications |
en_US |
dc.type |
Thesis |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée