Numerical treatment of stochastic differential equations: Diffusion and jump-diffusion processes with applications
Date
2024-06-13
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
UNIVERSITY BBA
Abstract
In thisdissertation,wedealwiththeproblemofsimulatingstochasticdifferentialequations
driven byBrownianmotionorthegeneralL´evy processes.First,weestablishthebasic
theory ofstochasticcalculusandintroducetheIt ˆo-Taylorexpansionforstochasticdifferen-
tial equations(SDEs).Inaddition,wepresentvariousnumericalschemesderivedfrom
the It ˆo-Taylorexpansion.ThesemethodsareusedtosolvethestochasticLorenzequa-
tion, thestochasticDuffingequation,andtheMertonmodelequation.Inaddition,spec-
tral techniquesareadaptedforthenumericalsolutionofnonlinearstochasticdifferential
equations. Further,generalizedLagrangeinterpolationfunctionsareproposedforsolving
various typesofSDEs,offeringsignificantperformanceimprovements.
Description
Keywords
Stochastic differentialequation,Brownianmotion,jumpdiffusion,spectral method, numericalsolution,collocationmethod. i