Numerical treatment of stochastic differential equations: Diffusion and jump-diffusion processes with applications

Thumbnail Image

Date

2024-06-13

Journal Title

Journal ISSN

Volume Title

Publisher

UNIVERSITY BBA

Abstract

In thisdissertation,wedealwiththeproblemofsimulatingstochasticdifferentialequations driven byBrownianmotionorthegeneralL´evy processes.First,weestablishthebasic theory ofstochasticcalculusandintroducetheIt ˆo-Taylorexpansionforstochasticdifferen- tial equations(SDEs).Inaddition,wepresentvariousnumericalschemesderivedfrom the It ˆo-Taylorexpansion.ThesemethodsareusedtosolvethestochasticLorenzequa- tion, thestochasticDuffingequation,andtheMertonmodelequation.Inaddition,spec- tral techniquesareadaptedforthenumericalsolutionofnonlinearstochasticdifferential equations. Further,generalizedLagrangeinterpolationfunctionsareproposedforsolving various typesofSDEs,offeringsignificantperformanceimprovements.

Description

Keywords

Stochastic differentialequation,Brownianmotion,jumpdiffusion,spectral method, numericalsolution,collocationmethod. i

Citation

Endorsement

Review

Supplemented By

Referenced By