Numerical treatment of stochastic differential equations: Diffusion and jump-diffusion processes with applications

dc.contributor.authorBoukhelkhal, Ikram
dc.date.accessioned2024-06-23T09:51:58Z
dc.date.available2024-06-23T09:51:58Z
dc.date.issued2024-06-13
dc.description.abstractIn thisdissertation,wedealwiththeproblemofsimulatingstochasticdifferentialequations driven byBrownianmotionorthegeneralL´evy processes.First,weestablishthebasic theory ofstochasticcalculusandintroducetheIt ˆo-Taylorexpansionforstochasticdifferen- tial equations(SDEs).Inaddition,wepresentvariousnumericalschemesderivedfrom the It ˆo-Taylorexpansion.ThesemethodsareusedtosolvethestochasticLorenzequa- tion, thestochasticDuffingequation,andtheMertonmodelequation.Inaddition,spec- tral techniquesareadaptedforthenumericalsolutionofnonlinearstochasticdifferential equations. Further,generalizedLagrangeinterpolationfunctionsareproposedforsolving various typesofSDEs,offeringsignificantperformanceimprovements.en_US
dc.identifier.issnMD/23
dc.identifier.urihttp://10.10.1.6:4000/handle/123456789/5035
dc.language.isoenen_US
dc.publisherUNIVERSITY BBAen_US
dc.subjectStochastic differentialequation,Brownianmotion,jumpdiffusion,spectral method, numericalsolution,collocationmethod. ien_US
dc.titleNumerical treatment of stochastic differential equations: Diffusion and jump-diffusion processes with applicationsen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
final theses -f-.pdf
Size:
23.96 MB
Format:
Adobe Portable Document Format
Description:
Stochastic differentialequations(SDEs)governedbyBrownianmotionandbyajumpdif- fusion areimportanttoolsinawiderangeofapplications,includingbiology,chemistry, mechanics, economics,andphysics.Theyarebecomingmoreandmoreattractivedueto their applicationforsimulatingstochasticphenomenainvariousfields. These equationsareexplainedandinterpretedinthecontextoftheIt ˆo calculus.Unfortu- nately,thereisfrequentlynoanalyticalsolutiontotheseequations,andweareobligedtouse numerical approximations.Broadlyspeaking,therearetwobasicwaystoderivetheseap- proximations.Whenthesampletrajectoriesofthesolutionsneedtobeapproximated,mean squareconvergenceisemployed,andthemethodsthusderivedarecalledstrong.When we areinterestedonlyinthemomentsorotherfunctionalsofthesolution,whichinvolvea much weakerformofconvergence. The purposeofthisdissertationistoprovideabriefoverviewofthedifferentnumeri- cal methodsforsolvingstochasticdifferentialequationsandtoproposeanewmethodol- ogy thatimprovessomeexistingtechniques.Itcanbeseenthatthediscretizationstepsize plays animportantroleintheaccuracyforeachmethodthroughthesimulationofIt ˆo-Taylor schemes andinparticularbytheexaminationoftheeffectivenessofsomeschemesforthe approximationofthesolutionsofSDE.Whenthestepsizeiskeptverysmall,goodresults can beattained.Conversely,thecomputationalcomplexityisveryhighwhenweincrease the orderoftheschemes. Wehaveproposedtwonumericalapproachesthatcanbeusedforfindingapproximate solutions ofstochasticintegralequations.InterpolationbyLagrangepolynomialsandzeros of JacobipolynomialsareusedtoreducetheconsideredproblemofstochasticVolterrainte- gral equationstoanalgebraicsystemofequations.Approximatesolutionsofthestochastic 119 Chapter 3AnovelmethodtosolvenonlinearSIVIE Volterraintegralequationsarethenobtained.Atheoreticalinvestigationisalsocarriedout to confirmtheerrorandconvergenceanalysisofthesemethods.Thespectralconvergence rate forthedevelopedmethodisestablished.Inordertoprovethesuitabilityandaccuracy of ourmethodsseveralrelatednumericalexampleswithdifferentsimulationsofBrownian motion areincluded.Thenumericalresultsofthepresentedmethodsarealsocompared with theresultsofothernumericaltechniques. The secondnewtechniqueisbasedoncombiningJacobi-Gausscollocationpointsand generalized Lagrangefunctions.Theaccuracyandconsistencyofthenewtechniqueare evaluated andcomparedwithsometechniques.Inaddition,sufficientconditionsaregiven to ensurethattheestimationerrortendstozero.Thenewtechniqueshowssurprisingeffi- ciency overtheexistingtechniquesintermsofneededtime,computational,andapproxima- tion performance.Theaccuracyofthesolutionderivedbythenewtechniqueissignificantly higher thanthatoftheexistingmethods. Weareoptimisticthatitwillbepossibletogeneralizetheproposedmethodtoabroader class ofproblemswhilemaintainingtheefficiencyandaccuracyofthemethod.Extending our workrepresentsaninterestingtopicforfuturework,whichwecanidentifyasfollows • The abilitytoextendtheapproximationtohigherdimensions. • Our resultsleavethedooropenforfuturedevelopments,includingtheextensionof the currentresearchtostochasticdifferentialequationsdrivenbyotherstochasticpro- cesses. • Accordingtotheapproachpresentedinthisdissertation

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: