Technique de diagnostic des défauts dans les systèmes électriques par les réseaux de neurones (machine asynchrone)

dc.contributor.authorAL-MUSHIAA Mohammed Mansoor ➢ AOUKLI Zakaria
dc.date.accessioned2022-11-08T12:34:51Z
dc.date.available2022-11-08T12:34:51Z
dc.date.issued2022-06
dc.description.abstractThe asynchronous machine is the most used in industry due to its robustness and low purchase or maintenance cost, but it can be exposed to many electrical or mechanical faults during its operation, which requires early detection. This has led to the use of many diagnostic methods that allow us to identify and classify faults that occur in the machine, among these techniques is the use of artificial intelligence and artificial neural networks. The objective of this work is to diagnose malfunctions of squirrel cage induction machines (broken bar fault) using artificial neural network techniques. We developed a neural network model to detect and classify defects, then we performed tests to validate the neural network modelen_US
dc.identifier.urihttp://10.10.1.6:4000/handle/123456789/2280
dc.language.isofren_US
dc.publisherfaculté des sciences et de la technologie univ bbaen_US
dc.relation.ispartofseries;EM/M/2022/06
dc.subjectAsynchronous machine; fault diagnosis; defect of broken bars; artificial neural network.en_US
dc.titleTechnique de diagnostic des défauts dans les systèmes électriques par les réseaux de neurones (machine asynchrone)en_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
MEMOIRE DE FIN_mmMMMMM.pdf
Size:
2.56 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: