Étude théorique et numérique d’un algorithme de point intérieur de type correcteur-prédicteur pour la programmation linéaire.

No Thumbnail Available

Date

2022-06-30

Authors

AGDOUCHE, Fouzia
BENRAI, Feriel

Journal Title

Journal ISSN

Volume Title

Publisher

Université de Bordj Bou Arreridj Faculty of Mathematics and Computer Science

Abstract

Complexité polynomiale. • Abstract: In this work, we studied a primal-dual algorithm of interior points of corrector-predictor type based on a new search direction to solve a linear problem (LP ), we have introduce algebraic transformation on the equation of centrality xz = µe. By the study of Darvay(2020), ψ(t) = t − √ t who proved that the algorithm has polynomial complexity, we have done comparative numerical tests between the theoretical choice of the displacement step during the prediction phase and the alternative choice to see the in uence of these parameters on th
Complexité polynomiale. • Abstract: In this work, we studied a primal-dual algorithm of interior points of corrector-predictor type based on a new search direction to solve a linear problem (LP ), we have introduce algebraic transformation on the equation of centrality xz = µe. By the study of Darvay(2020), ψ(t) = t − √ t who proved that the algorithm has polynomial complexity, we have done comparative numerical tests between the theoretical choice of the displacement step during the prediction phase and the alternative choice to see the in uence of these parameters on th

Description

Keywords

ue de cet algorithme. • Mots clés : Méthode de points interieurs, Programmation lineaire, Algorithme correcteur- predicteur, transfermation algébriqu, ue de cet algorithme. • Mots clés : Méthode de points interieurs, Programmation lineaire, Algorithme correcteur- predicteur, transfermation algébriqu

Citation

Endorsement

Review

Supplemented By

Referenced By