La solution de l’équation de Yang-Baxter

dc.contributor.authorLounici Zineb
dc.contributor.authorZeghloul Asma
dc.date.accessioned2023-03-01T12:37:19Z
dc.date.available2023-03-01T12:37:19Z
dc.date.issued2022
dc.description.abstractIn this memory we discuss and characterize several set-theoretic solutions of the Yang-Baxter equation obtained using skew lattices, an algebraic structure that has not yet been related to the Yang-Baxter equation. Such solutions are degenerate in general, and thus different from solutions obtained from braces and other algebraic structures. Our main result concerns a description of a set-theoretic solution of the Yang-Baxter equation, obtained from an arbitrary skew lattice. We also provide a construction of a cancellative and distributive skew lattice on a given family of pairwise disjoint sets. Dans ce mémoire, nous discutons et caractérisons plusieurs ensembles des solutions théories de l’équation de Yang-Baxter obtenues par les treillis asymétrique, c’est une autre approche autre que les espaces vectoriels liée à la recherche de la solution de l’équation de Yang-Baxter, de telles solutions sont dégénérées en général. Ces résultats ont été tirés de l’article•en_US
dc.identifier.issnMTM/340
dc.identifier.urihttp://10.10.1.6:4000/handle/123456789/3521
dc.language.isofren_US
dc.subjectYang-Baxteren_US
dc.titleLa solution de l’équation de Yang-Baxteren_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
end_Y-B.pdf
Size:
1 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: