La solution de l’équation de Yang-Baxter
dc.contributor.author | Lounici Zineb | |
dc.contributor.author | Zeghloul Asma | |
dc.date.accessioned | 2023-03-01T12:37:19Z | |
dc.date.available | 2023-03-01T12:37:19Z | |
dc.date.issued | 2022 | |
dc.description.abstract | In this memory we discuss and characterize several set-theoretic solutions of the Yang-Baxter equation obtained using skew lattices, an algebraic structure that has not yet been related to the Yang-Baxter equation. Such solutions are degenerate in general, and thus different from solutions obtained from braces and other algebraic structures. Our main result concerns a description of a set-theoretic solution of the Yang-Baxter equation, obtained from an arbitrary skew lattice. We also provide a construction of a cancellative and distributive skew lattice on a given family of pairwise disjoint sets. Dans ce mémoire, nous discutons et caractérisons plusieurs ensembles des solutions théories de l’équation de Yang-Baxter obtenues par les treillis asymétrique, c’est une autre approche autre que les espaces vectoriels liée à la recherche de la solution de l’équation de Yang-Baxter, de telles solutions sont dégénérées en général. Ces résultats ont été tirés de l’article• | en_US |
dc.identifier.issn | MTM/340 | |
dc.identifier.uri | http://10.10.1.6:4000/handle/123456789/3521 | |
dc.language.iso | fr | en_US |
dc.subject | Yang-Baxter | en_US |
dc.title | La solution de l’équation de Yang-Baxter | en_US |
dc.type | Thesis | en_US |