Reconnaissance d’Oreilles Basée sur l’Apprentissage Profond : Améliorer la Précision et la Performance dans des Scénarios Réels
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
UNIVERSITY BBA
Abstract
Automatic recognition of individuals from ear images is a rapidly growing research field,
competitive with other biometrics such as facial recognition and fingerprints. The ear offers
unique and stable characteristics over time, which can be captured with a traditional camera.
Our research explores ear recognition using various feature extraction models and classification
methods. The first architecture employs SVM and KNN algorithms with LLBP and
ALBP descriptors, achieving accuracies ranging from 85% to 98.50%. The second architecture
uses convolutional neural networks (CNN) on processed images, achieving a remarkable
accuracy of 100%.
Description
Keywords
biometrics, ear recognition, facial recognition, convolutional neural networks, feature extraction, classification methods, correct recognition rate.