Reconnaissance d’Oreilles Basée sur l’Apprentissage Profond : Améliorer la Précision et la Performance dans des Scénarios Réels

dc.contributor.authorRAHMANI, Sara
dc.date.accessioned2024-10-24T11:08:03Z
dc.date.available2024-10-24T11:08:03Z
dc.date.issued2024
dc.description.abstractAutomatic recognition of individuals from ear images is a rapidly growing research field, competitive with other biometrics such as facial recognition and fingerprints. The ear offers unique and stable characteristics over time, which can be captured with a traditional camera. Our research explores ear recognition using various feature extraction models and classification methods. The first architecture employs SVM and KNN algorithms with LLBP and ALBP descriptors, achieving accuracies ranging from 85% to 98.50%. The second architecture uses convolutional neural networks (CNN) on processed images, achieving a remarkable accuracy of 100%.en_US
dc.identifier.issnMM/844
dc.identifier.urihttp://10.10.1.6:4000/handle/123456789/5667
dc.language.isofren_US
dc.publisherUNIVERSITY BBAen_US
dc.subjectbiometrics, ear recognition, facial recognition, convolutional neural networks, feature extraction, classification methods, correct recognition rate.en_US
dc.titleReconnaissance d’Oreilles Basée sur l’Apprentissage Profond : Améliorer la Précision et la Performance dans des Scénarios Réelsen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
M2_Latex_Template_French (13) - Copie.pdf
Size:
5.92 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: