Limit cycles of discontinuous piecewise differential systems separated by a non–regular line and formed by an arbitrary linear center and an arbitrary quadratic center

dc.contributor.authorBaymout, Louiza
dc.date.accessioned2024-06-23T12:24:47Z
dc.date.available2024-06-23T12:24:47Z
dc.date.issued2024-06-11
dc.description.abstractThis thesisconsistsoftwoimportantparts,thefirstoneisdevotedtothe study oftheupperboundonthenumberoflimitcyclesthatcanbecreatedfrom three differentnon-linearfamiliesofdiscontinuouspiecewisedifferentialsystems separated byaregularline. The secondpartfocusesonthestudyoftheexistenceandthemaximumnumber of limitcyclesofaclassofnon-lineardiscontinuouspiecewisedifferentialsystems but inthiscaseweuseanirregularlineastheseparationcurveinsteadofregular line.en_US
dc.description.abstractThis thesisconsistsoftwoimportantparts,thefirstoneisdevotedtothe study oftheupperboundonthenumberoflimitcyclesthatcanbecreatedfrom three differentnon-linearfamiliesofdiscontinuouspiecewisedifferentialsystems separated byaregularline. The secondpartfocusesonthestudyoftheexistenceandthemaximumnumber of limitcyclesofaclassofnon-lineardiscontinuouspiecewisedifferentialsystems but inthiscaseweuseanirregularlineastheseparationcurveinsteadofregular line.en_US
dc.identifier.issnMD/24
dc.identifier.urihttp://10.10.1.6:4000/handle/123456789/5036
dc.language.isoenen_US
dc.publisherUNIVERSITY BBAen_US
dc.subjectDiscontinuouspiecewisedifferentialsystem,limitcycle,linearcenter, (regular/ irregular)line,quadraticcenter,isochronouscenter,nilpotentcenteren_US
dc.subjectDiscontinuouspiecewisedifferentialsystem,limitcycle,linearcenter, (regular/ irregular)line,quadraticcenter,isochronouscenter,nilpotentcenteren_US
dc.titleLimit cycles of discontinuous piecewise differential systems separated by a non–regular line and formed by an arbitrary linear center and an arbitrary quadratic centeren_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Louiza's Thesis.pdf
Size:
2.69 MB
Format:
Adobe Portable Document Format
Description:
This thesis devotedtosolvethesecondpartofthesixteenthHilbertproblemfor twotypesofplanarPWSdependingonthenatureoftheseparationcurve,the first typeseparatedbytheregularline Σr and thesecondtypeseparatedbytheirregular line Σi . Firstlywhentheseparationcurveistheregularline Σr westudythelimitcyclesfor PWSformedeitherbylinearandcubicdifferentialcentersoronlycubicdifferential centersineachregion.Weanalyzethemaximumnumberoflimitcyclesthatcanbe bifurcatefromthefivefamiliesofPWSbyusingstandardtechniquessuchasBézout theorem, Resultanttheory,orthemaximumnumberoftheintersectionpointsbetween the graphicsofnon-algebraicfunctions.Consequentlywedemonstratethatwhenthe separationcurveisaregularline,thereexistfamiliesofPWSwithatmostfourlimit cycles. Wealsoprovideexampleswhichconfirmthatthisupperboundisreached. Secondlywhenweconsidertheirregularseparationcurve Σi weexaminethelimitcy- cles fortheclassofPWSformedbylinearandquadraticdifferentialcenters.Weanalyze the maximumnumberoflimitcyclesthatcanbecreatedfromthisclassofPWSbyus- ing themaximumnumberofintersectionpointsbetweenthegraphicsofnon-algebraic functions. Weprovethateightisthemaximumnumberoflimitcyclesforthisclassof systems. Thenwedemonstratehowthenatureoftheseparationcurveaffects thismax- imumnumberforplanarPWS.Additionallyweprovideexampleswithexactlysixlimit cycles. While thisstudyhasprovidedvaluableinsightsintothebehaviorofsomenon-linear PWS,thereremainsavastandpromisingfrontierawaitingexplorationintherealmof non-linear PWS.Additionallythisworkcouragouslygiveslighttotheusesofseparation curvesbeyondregularlinesthataffect thedynamicswithinPWS.

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: