Doctora Mathématiques
Permanent URI for this collectionhdl:123456789/444
Browse
Item Analysis and Approximate Solution of a Class of Singular Integral Equations(Université de Bordj Bou Arreridj, 2018-06-28) Guechi, AhmedAbstract In this thesis, we have studied the singular integral equation, which has the general form The aim of this thesis is to provide the solution of this equation. The main idea is to change the unbounded interval to a bounded one and use the Chebyshev spectral methods to solve the integral equation in the finite interval. Keywords: Integral equations, Chebyshev polynomials, Infinite integral, Spectral methods. ملخص في هذه الأطروحة قمنا بدراسة المعادلة التكاملية الشاذة، التي لها الشكل العام ( ) ∫ ( ) ( ) ( ) الهدف من هذه الأطروحة هو إيجاد حل هذه المعادلة، فالفكرة هي تغيير المجال من غير محدود إلى مجال محدود، ثم استخدام الطرق الطيفية لتشيبيشيف من أجل حل المعادلة التكاملية في المجال ا لمحدود. الكلمات ا لمفتاحية: المعادلات التكاملية، كثي رات حدود تشيبيشيف، تكامل غير محدود، والطرق الطيفية. Résumé Dans cette thèse nous avons étudié l'équation intégrale singulière, qui a la forme générale ( ) ∫ ( ) ( ) ( ) Le but de cette thèse est trouvé la solution de cette équation. L'idée principale est de changé l'intervalle non borné au intervalle borné et d'utiliser les méthodes spectrale de Tchebychev pour résoudre l'équation intégrale dans l'intervalle fini. Mots-clés: Equations intégrale, polynômes de Tchebychev, intégrale infinie, méthodes spectrale.Item Compactly supported radial basis functions(Université de Bordj Bou Arreridj Faculty of Mathematics and Computer Science, 2023) TAKOUK, DalilaThis thesis deals with the applications of compactly supported radial basis functions for high dimensional reconstruction of surfaces (images) based on irregular samples. These methods without mesh (meshfree) based on the introduction of radial basis functions, contrary to traditional methods, namely finite element (FEM) and finite difference (FDM) methods. We try to introduce the concept of this technique through several applications Cette thèse traite les applications des fonctions de base radiale, à support compact (CSRBF), pour la reconstruction bidimensionnelle de surfaces (images) à partir d’échantillons irréguliers. Ces méthodes sans maillage (meshefree) qui reposent sur l’introduction des fonctions de base radiale, contrairement, aux méthodes traditionnelles, a savoir la méthode des éléments finis (FEM) et la méthode des différences finies (FD). Nous essayons d’introduire le concept de cette méthode à travers plusieurs applicationsتناول ذهطروحةتطبيقاتوظائفساس الشعا المدعومة شل مضغوطلإعادة بناءسطح ذات عاد العالية اسنادا إ عينات غ منتظمة. ذه الطرق بدون شبكة سند إ إدخال وظائف ساس الشعا، ع عكس الطرق التقليدية، كطرقة الفروق ادودة وطرقة العناصر ادودة. نحاول تقديم مفوم ذه الطرقة من خلال عدة تطبيقات. .Item Etude et Construction de Méthodes Numériques pour Quelques Equations Intégro-Différentielles(Université de Bordj Bou Arreridj, 2018-05-13) Maadadi, AsmaRésumé Cette thèse s'inscrit dans le domaine math ematique de l'étude numéerique des équations intégro-différentielles. Ces équations sont tr es int eressantes, car il y a un lien trés étroit entre ces derni eres et l'analyse fonctionnelle et la th eorie des opéerateurs. Les EIDs sont issues a partir de plusieurs domaines de la recherche scienti que et de la mod elisation math ematique des ph enom enes scienti ques tr es vari es tels que : la dynamique des uides, la physique des solides, la physique des plasmas, l' economie, le ch emostat, le biotissues, la chemical kinetics et etc. Les EIDs sont di ciles a r esoudre analytiquement, il est donc n ecessaire d'obtenir une solution approch ee. L'objectif essentiel de ce travail de th ese est de construire des m ethodes num eriques e caces pour la r esolution approch ee de ces equations, telles que : la m ethode de collocation, la m ethode de Galerkin et la m ethode de Tau. On a appliqu e la m ethode de collocation par les RBFs sur les EIDs lin eaires et non lin eaires de Volterra d'ordre sup erieur, qui est bas ee sur les m ethodes de quadrature. Mots clés : Equations intégro-différentielles, Fonctions de base radiales, Méthodes spectrale, Polynômes orthogonaux. Abstract This thesis is concerned with the numerical study of the integro-differential equations. These equations are very interesting because there is a very close link between these and the functional analysis and the theory of the operators. The integro-differential equations occur in various areas. These equations arise in mathematical modeling of many scienti c phenomena, such as : uid dynamics, solid state physics, plasma physics, economics, chemostat, biotissues, chemical kinetics and etc. The IDEs are di cult to solve analytically, so it is necessary to obtain an approximate solution. The main objective of this thesis is to present e cient numerical methods for the approximate resolution of these equations, such as : collocation method, Galerkin method and Tau method. The indirect RBF collocation method has been applied to higher order linear and nonlinear IDEs of Volterra, which is based on quadrature formulas. Keywords :Item Etude qualitative de quelques EDPs en temps avec amortissement(UNIVERSITY BBA, 2024) LAKEHAL, IBRAHIMThis thesis is devoted to the study of two problems related to the theory of control of PDE. In a first and second time, we study two nonlinear Euler-Bernoulli beams with a neutral type delay and viscoelastic, using controls acting on the free boundaries. By using the method of Faedo-Galerkin, we prove the existence and uniqueness of the solution for each problem. After that using the energy method and constructing an appropriate Lyapunov function, under certain conditions on the neutral delay term kernel and the viscoelastic term, we show that although, the destructive nature of delay in general, which is a very general degrading energy problem.Item Global Phase Portraits for Some Classes of Cubic Polynomial Di fferential Systems(Université Mohamed el-Bachir el-Ibrahimi Bordj Bou Arréridj Faculté de Mathématique et Informatique, 2022) Ahlam, BELFARفي رسالتنا هذه قمنا بدراسة الديناميكية النوعية لبعض الفئات من الأنظمة التفاضلية المستوية وغير الخطية، وبالتحديد وكخطوة أولى تمكنا من إيجاد كل الحلول الهندسية لخمس جمل تفاضلية ذات منحنيات جبرية ثابتة من الدرجة الثالثة. قمنا أيضا بإيجاد كل الحلول الهندسية في قرص بوانكاريه للأنظمة التفاضلية العامة لما يسمى بأنظمة كوكلز من الدرجة الثامنة، كما تمكنا من حل الجزء الثاني من المسألة السادسة عشر لهيلبرت للأنظمة التفاضلية الخطية لهاميلتون والتي لا تملك نقاط توازن ومفصلولة بمنحنيات جبرية من الدرجة الثالثة غير قابلة للتحليل. الكلمات المفتاحية: أنظمة تفاضلية متعددة الحدود، منحنيات جبرية ثابتة، الحلول الدورية المعزولة، الحلول الهندسية الكلية، طريقة المتوسط لحساب عدد الحلول الدورية، الأنظمة التفاضلية لهاميلتون، المنحنيات الجبرية من الدرجة الثالثة وغير القابلة للتحليل. Abstract: In this thesis, a study of a qualitative dynamics of some classes of nonlinear planar differential systems has been done. More precisely, in the first part we give the global phase portraits of five new classes of differential systems with cubic invariant algebraic curves, then we give the seven global phase portraits in the Poincaré disc of a generalized Kukles differential system of degree eight. In the second part we solve the second part of 16th Hilbert problem of planar discontinuous piecewise linear Hamiltonian systems without equilibrium points separated by irreducible cubics. Keywords: Polynomial differential systems, invariant algebraic curves, limit cycles, global phase portraits, averaging method, linear Hamiltonian systems, irreducible cubic curves. Résumé : Dans cette thèse, une étude de la dynamique qualitative de certaines classes de systèmes différentiels planaires non linéaires a été réalisée. Plus précisément, dans la première partie, nous donnons les portraits de phase globaux de cinq nouvelles classes de systèmes différentiels à courbes algébriques cubiques invariantes, puis nous donnons les sept portraits de phase globaux dans le disque de Poincaré d'un système différentiel de Kukles généralisé de degré huit. Dans la deuxième partie, nous résolvons la deuxième partie du 16ème problème de Hilbert des systèmes Hamiltoniens linéaires planaires discontinus par morceaux sans points d'équilibre séparés par des cubiques irréductibles. Mots clés : Systèmes différentiels polynomiaux, courbes algébriques invariantes, cycles limites, portraits de phase globaux, méthode de moyennage, systèmes Hamiltoniens linéaires, courbes cubiques irréductibles.Item Limit cycles of continuous and discontinuous piecewise differential systems separated by straight line and formed by two arbitrary quadratic centers(UNIVERSITY BBA, 2024-06-12) Imane Benabdallah, BenabdallahOur thesisisdevotedtosolvingasignificantandchallengingissueinthequalitativetheory of differentialsystemscalledthesixteenthHilbertproblem.Moreprecisely,weusethefirst integralstodeterminethemaximumnumberoflimitcyclesofsomefamiliesofdiscontinuous piecewise nonlineardifferentialsystemsseparatedbyastraightlineItem Limit cycles of discontinuous piecewise differential systems separated by a non–regular line and formed by an arbitrary linear center and an arbitrary quadratic center(UNIVERSITY BBA, 2024-06-11) Baymout, LouizaThis thesisconsistsoftwoimportantparts,thefirstoneisdevotedtothe study oftheupperboundonthenumberoflimitcyclesthatcanbecreatedfrom three differentnon-linearfamiliesofdiscontinuouspiecewisedifferentialsystems separated byaregularline. The secondpartfocusesonthestudyoftheexistenceandthemaximumnumber of limitcyclesofaclassofnon-lineardiscontinuouspiecewisedifferentialsystems but inthiscaseweuseanirregularlineastheseparationcurveinsteadofregular line.Item Mapped spectral methods and rational approximations(Université de Bordj Bou Arreridj Faculty of Mathematics and Computer Science, 2023) REMILI, WALIDL’objectif principal de cette thèse est d’approximer les solutions de certains problèmes mathématiques sous la forme d’équations intégrales ou d’équations différentielles sur des domaines non bornés. Une stratégie courante et efficace pour traiter les domaines illimités consiste à utiliser un mappage approprié qui transforme un domaine infini. Dans cette thèse, nous introduisons un nouveau système orthogonal de fonctions de Jacobi mappées qui sont les images des polynômes de Jacobi classiques sous l’application inverse. Les méthodes spectrales de Jacobi modifiées sont proposées pour les équations différentielles du second ordre et intégrales non linéaires sur le domaine semi-infini. The main aim of this thesis is to approach the solutions of some mathematical problems in the form of integral equations or differential equations on unbounded domains. A common and effective strategy in dealing with unbounded domains is to use a suitable mapping that transforms an infinite domain. In this thesis, we introduce a new orthogonal system of mapped Jacobi functions which is the images of classical Jacobi polynomials under the inverse mapping. The modified Jacobi spectral methods are proposed for second-order differential and nonlinear integral equations on the semi-infinite domain.Item Numerical treatment of stochastic differential equations: Diffusion and jump-diffusion processes with applications(UNIVERSITY BBA, 2024-06-13) Boukhelkhal, IkramIn thisdissertation,wedealwiththeproblemofsimulatingstochasticdifferentialequations driven byBrownianmotionorthegeneralL´evy processes.First,weestablishthebasic theory ofstochasticcalculusandintroducetheIt ˆo-Taylorexpansionforstochasticdifferen- tial equations(SDEs).Inaddition,wepresentvariousnumericalschemesderivedfrom the It ˆo-Taylorexpansion.ThesemethodsareusedtosolvethestochasticLorenzequa- tion, thestochasticDuffingequation,andtheMertonmodelequation.Inaddition,spec- tral techniquesareadaptedforthenumericalsolutionofnonlinearstochasticdifferential equations. Further,generalizedLagrangeinterpolationfunctionsareproposedforsolving various typesofSDEs,offeringsignificantperformanceimprovements.Item Periodic orbits of differential systems via averaging theory(Université de Bordj Bou Arreridj Faculty of Mathematics and Computer Science, 2022) Loubna, DAMENEفي رسالتنا قمنا بدراسة الديناميكية النوعية لبعض الفئات من األنظمة التفاضمية المستوية و غير الخطية. بالتحديد و كخطوة أولي تمكنا من حل الجزء الثاني من المسألة السادس عشرة لهيمبرت لألنظمة الخطية المفصولة بمنحنيات جبرية مكعبة غير قابمة لالختزال. حيث أننا درسنا أوال األنظمة المركزية الخطية. - بعدها مزجنا بين األنظمة الخطية لهميمتون و األنظمة المركزية. كما تمكنا أيضا من إيجاد جميع الحمول الهندسية في قرص بوانكاريه لألنظمة التفاضمية لما يسمى بأنظمة كوكمز من الدرجة الثامنة. Notre thèse est divisée en deux parties, la première partie consiste à résoudre la deuxième partie du seizième problème de Hilbert de trois classes différentiels discontinues linéaires par morceaux en utilisant les intégrales premières. La deuxième partie s'articule sur le problème de cyclicité pour une classe de système différentiel de Kukles, où on a utilisé la méthode de la moyenne jusqu'à l'ordre sept pour obtenir le nombre maximal de cycle limite de ce système. Our thesis is divided in two parts, the first part consists in solving the second part of the sixteenth Hilbert problem of three piecewise linear discontinuous differential classes by using the first integrals. The second part focuses on the cyclicity problem for a class of Kukles differential system, where we used the method of averaging up to order seven to obtain the maximum number of limit cycles of this system.Item Phase planes and bifurcations in planar linear-quadratic differential systems with a pseudo-focus(UNIVERSITY BBA, 2024-06-12) Barkat, MeriemOur thesis isdividedinthreeparts,thefirstpartconsistsinsolvingthesecondpartofthe extended 16thHilbertproblemforaclassofdiscontinuouspiecewisedifferentialsystems.The second partfocusesonfindingthemaximumnumberoflimitcyclesofsmallamplitudewhichis called thecyclictyproblem,andthethirdpartwewereabletofindtheglobalphaseportraitsand the bifurcationsetsforsomespecificfamiliesofdiscontinuouspiecewisequadraticdifferential systems, characterizedbyhavingapseudo-centreattheoriginItem Stabilité et convergence des méthodes spectrales Application aux équations intégrales(Université de Bordj Bou Arreridj Faculty of Mathematics and Computer Science, 2024) Radjai, abirIn recent years, there has been a growing interest in the formulation of many problems in terms of integral equations, and this has fostered a parallel rapid growth of the literature on their numerical solution. In this sense, our focus will be on spectral methods for solving integral equations. One of the purposes of this research is to provide the mathematical foundations of spectral methods and to analyze their basic theoretical properties (stability, accuracy, computational complexity, and convergence). Furthermore, we have applied the spectral collocation method to find numerical solutions to quadratic Urysohn integral equations. This method reduces the nonlinear integral equation to a system of nonlinear algebraic equations and that algebraic system has been solved by the iterative method. We have derived an error analysis for the current method, which proves that it has exponential convergence order. Finally, several numerical examples are given to show the effectiveness and stability of our approach